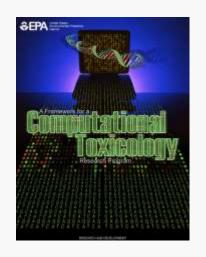


Applications of the US EPA's CompTox Dashboard to support structure identification and chemical forensics using mass spectrometry


Antony Williams¹, Andrew D. McEachran², Jon R. Sobus³ and Emma Schymanski⁴

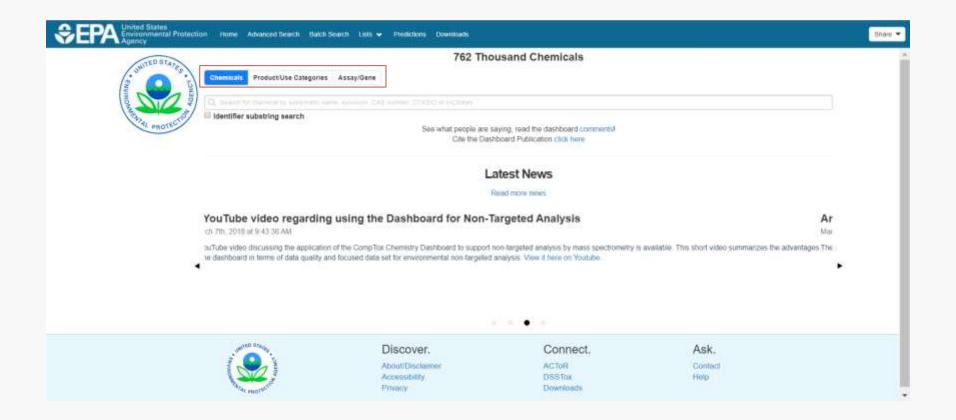
- 1) National Center for Computational Toxicology, U.S. Environmental Protection Agency, RTP, NC
 - 2) Oak Ridge Institute of Science and Education (ORISE) Research Participant, RTP, NC
 - 3) National Exposure Research Laboratory, U.S. Environmental Protection Agency, RTP, NC
- 4) Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, Luxembourg

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

National Center for Computational Toxicology

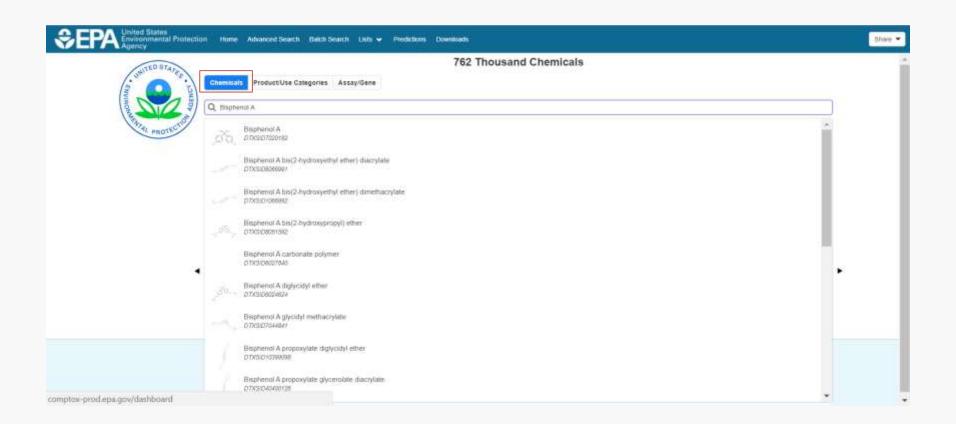
- National Center for Computational Toxicology established in 2005 to integrate:
 - High-throughput and high-content technologies
 - Modern molecular biology
 - Data mining and statistical modeling
 - Computational biology and chemistry
- Researching computational approaches to quickly evaluate the safety of chemicals for potential risk.
- Outputs: a lot of data, models, algorithms and software applications

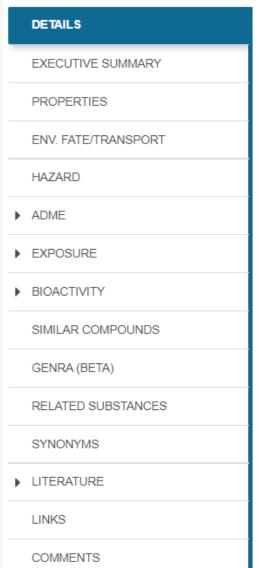
The CompTox Chemistry Dashboard

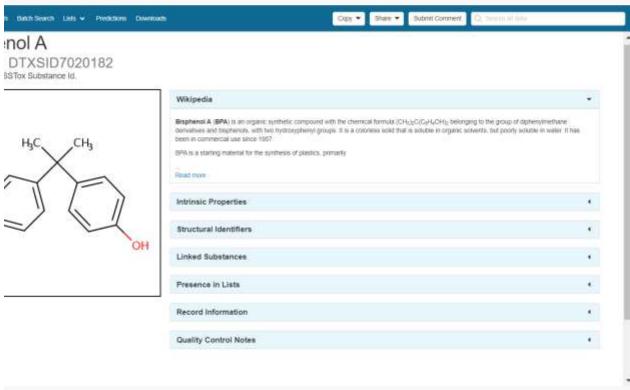


- A publicly accessible website delivering access:
 - New entry portal for all NCCT dashboards
 - ~762,000 chemicals with related property data
 - Searchable by chemical, product use, gene and assay (ToxCast)
 - Experimental and predicted physicochemical property data
 - "Bioactivity data" for the ToxCast/Tox21 project
 - Generalized Read-Across (GenRA) module
 - Links to other agency websites and public data resources
 - "Literature" searches for chemicals using public resources
 - "Batch searching" for thousands of chemicals
 - DOWNLOADABLE Open Data for reuse and repurposing

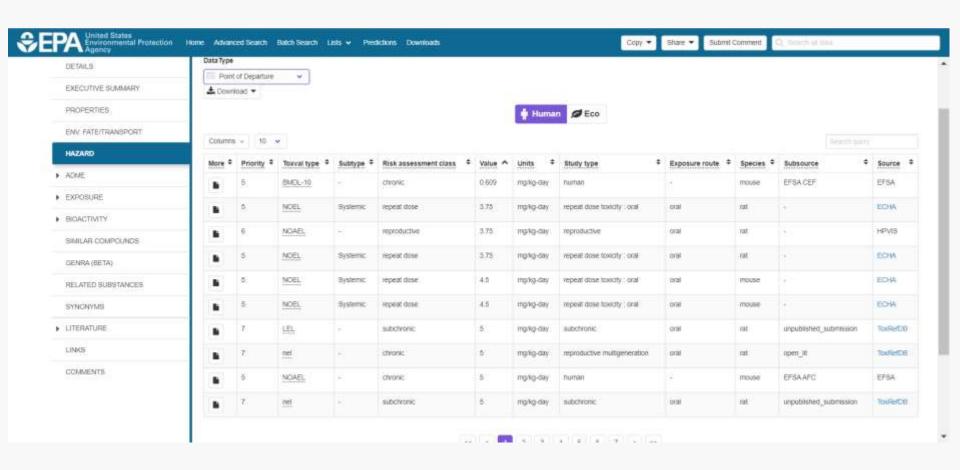
CompTox Dashboard


https://comptox.epa.gov/dashboard

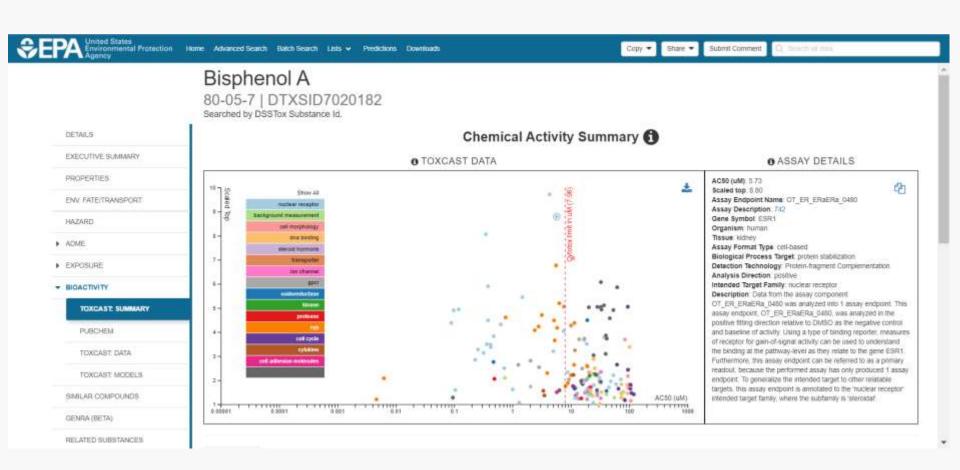

CompTox Dashboard Chemicals



Detailed Chemical Pages

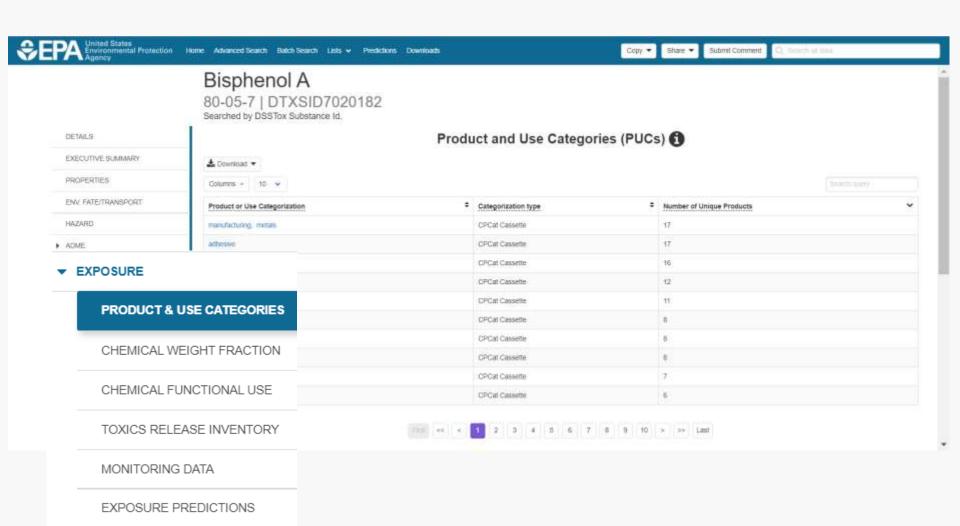


Access to Chemical Hazard Data

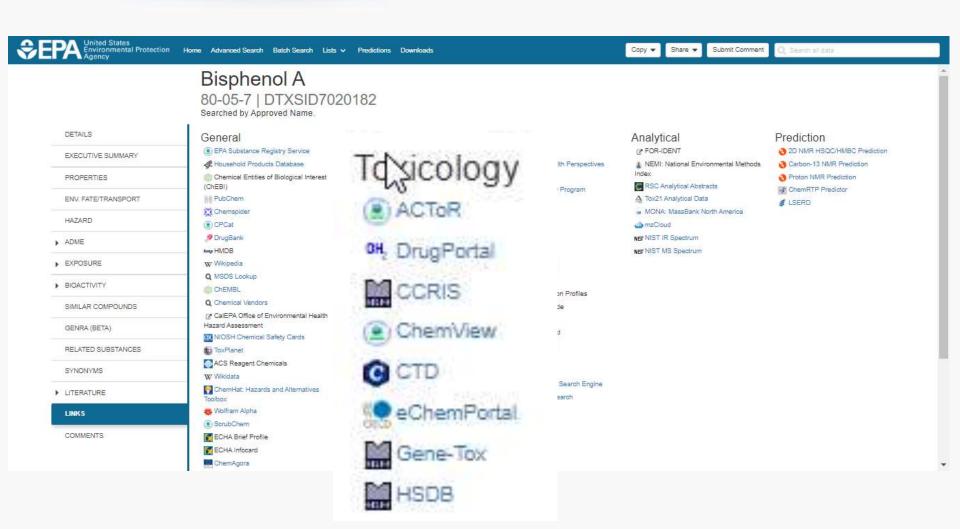


In Vitro Bioassay Screening

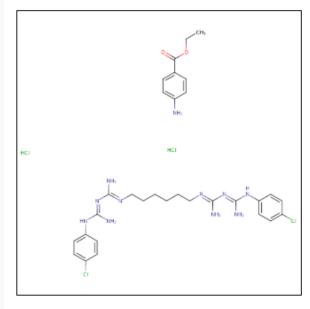
ToxCast and Tox21

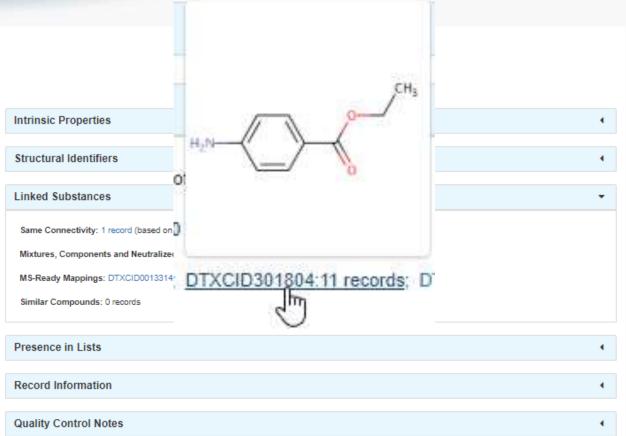


Sources of Exposure to Chemicals

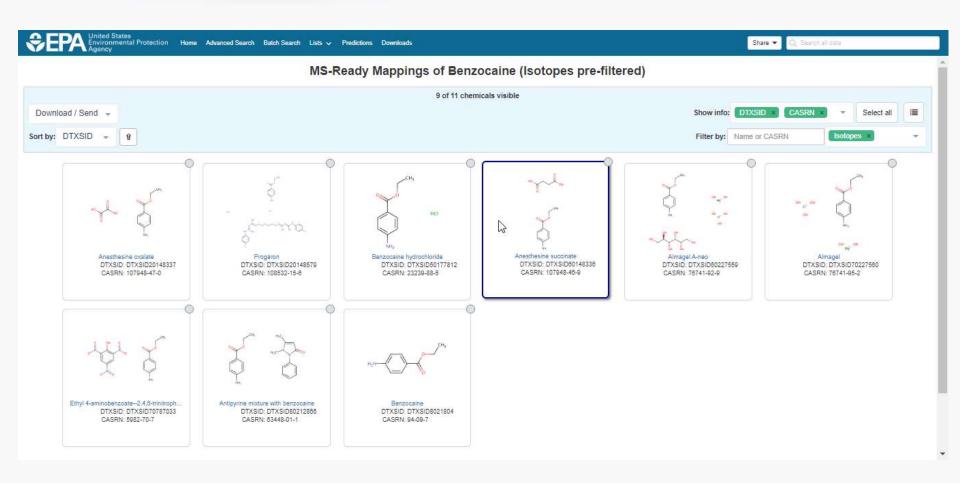

PRODUCTION VOLUME

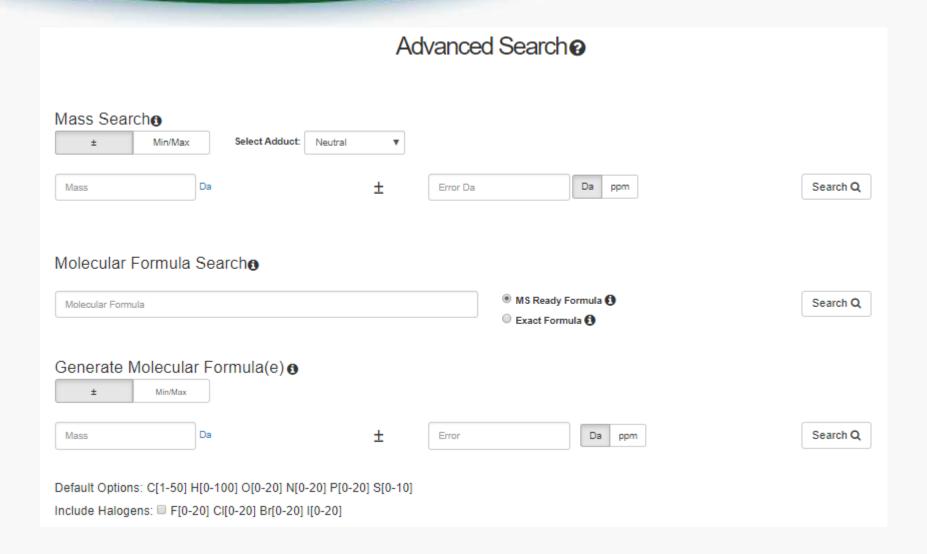
External Links to ~80 websites

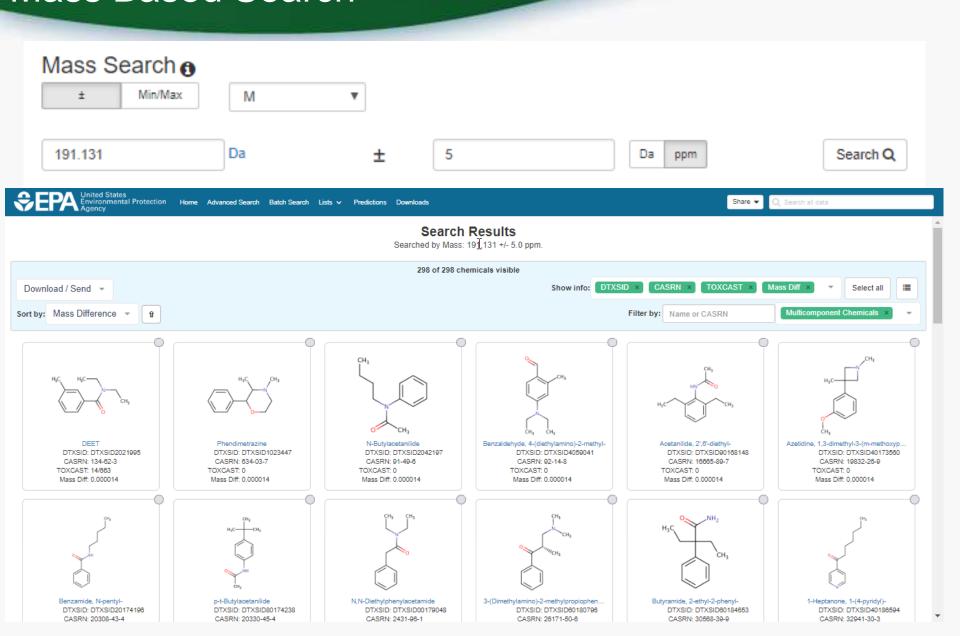


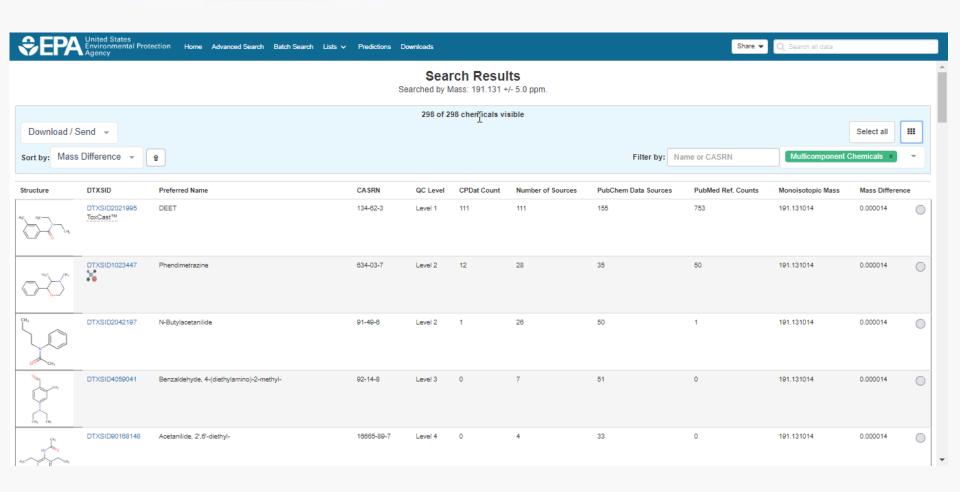


Progaron


108532-15-6 | DTXSID20148579 Searched by DSSTox Substance Id.


MS-Ready Mappings Set


Mass and Formula Searches Supporting Mass Spectrometry


Advanced Searches Mass Based Search

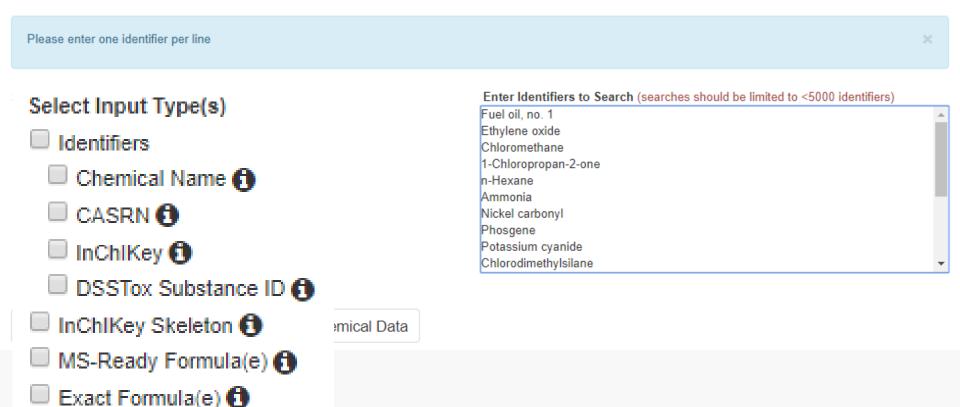
Advanced Searches Mass Based Search

Batch Searching

 Singleton searches are useful but we work with thousands of chemicals!

- Typical questions
 - What is the list of chemicals for the formula C_xH_yO_z
 - What is the list of chemicals for a mass +/- error
 - Can I get chemical lists in Excel files? In SDF files?

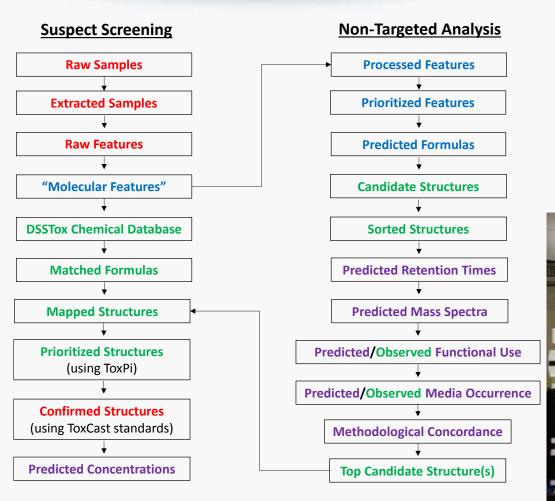
Batch Searching


Monoisotopic Mass

Step Three: Select Download Data or Display Chemicals

Batch Searching

Select Output Format:							
Excel V	≛ Download						
Customize Results Select All Select All in Lists Chemical Identifiers DTXSID Chemical Name CAS-RN InChlKey	Presence in Lists: ICCVAM test method evaluation report: in vitro ocular toxicity test methods 40CFR355 A list of all PBDEs (Polybrominated diphenyl ethers) A list of all PCBs (Polychlorinated biphenyls) A list of polycyclic aromatic hydrocarbons Acute exposure guideline levels Algal Toxins Androgen Receptor Chemicals						
IUPAC Name Structures	APCRA Chemicals for Prospective Analysis APCRA Chemicals for Retrospective Analysis						
■ Mol File (1) ■ SMILES (1) ■ InChI String (1)	APCRA Chemicals for Retrospective Analysis APCRA Chemicals for Retrospective Analysis_App_List_448_Chemicals ATSDR Minimal Risk Levels (MRLs) for Hazardous Substances ATSDR Toxic Substances Portal Chemical List						
☐ MS-Ready SMILES 1 ☐ QSAR-Ready SMILES 1	 □ Bisphenol Compounds □ California Office of Environmental Health Hazard Assessment 						
Intrinsic And Predicted Properties Molecular Formula Average Mass Massis Mas	 □ Chemicals with interesting names □ CMAP □ DNT Screening Library □ Drinking Water Suspects, KWR Water, Netherlands 						
 ■ Monoisotopic Mass (1) ■ TEST Model Predictions (1) ■ OPERA Model Predictions (1) 	EDSP Universe EPA Chemicals associated with hydraulic fracturing						


Excel Output

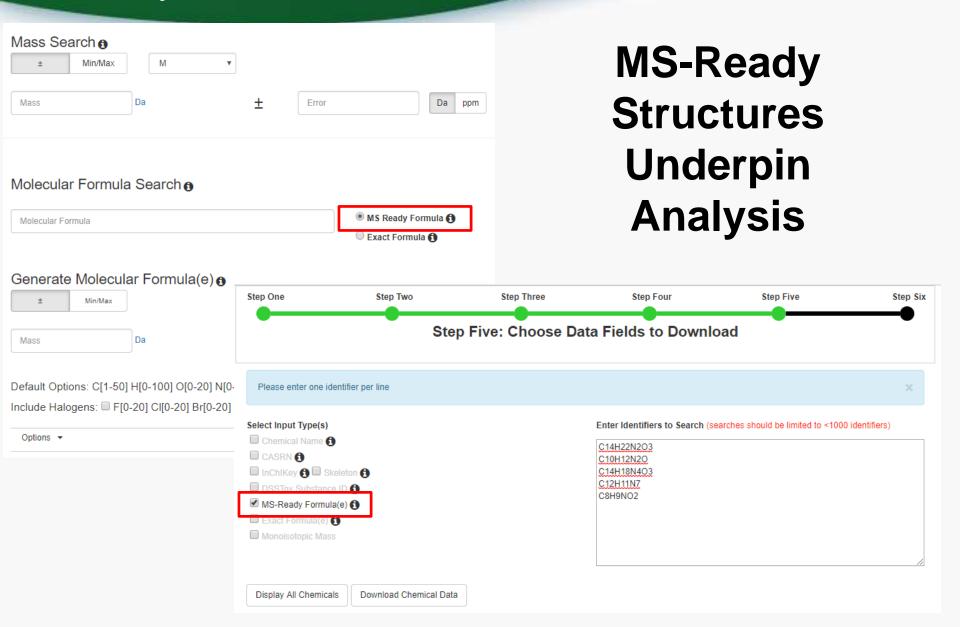
INPUT _	FOUND_BY	DTXCID_I	N DATA_SA	LAVXOT	L_DTOXCAST_	_TOXCAST	_NUMBER_(PUBCHEM	STO
C6H12O3	MS Ready I	DTXCID70	1! 5	PΥ	0.36	2/562	24	83	Y
C6H12O3	MS Ready I	DTXCID00:	34 6	7 Y	0.36	1/276	376	80	Υ
C6H12O3	MS Ready I	DTXCID10	6' 6'	5 Y	4.42	5/113	6	77	Y
C6H12O3	MS Ready I	DTXCID10	5: 4/	5 Y	0.0	0/163	3	94	
C6H12O3	MS Ready I	DTXCID90	11 3/	8 Y	-	-	14	110	Y
C6H12O3	MS Ready I	DTXCID40:	24 3/	4 Y	0.0	0/113	-	53	Y
C6H12O3	MS Ready I	DTXCID20:	2! 3	1 Y	-	-	-	36	Y
C6H12O3	MS Ready I	DTXCID20:	24 3/	0 -	2.54	7/276	-	54	
C6H12O3	MS Ready I	DTXCID109	9 2/	6 Y	-	-	-	46	_
C6H12O3	MS Ready I	DTXCID20:	2! 2	4 Y	0.0	0/113	-	47	-
C6H12O3	MS Ready I	DTXCID30:	3 2	2 Y	-	-	-	89	
C6H12O3	MS Ready I	DTXCID30:	2' 2'	0 Y	-	-	2	25	Y
C6H12O3	MS Ready I	DTXCID40	74 11	9 Y	-	-	12	62	
C6H12O3	MS Ready I	DTXCID70	4 1	7 Y	-	-	-	64	, -
C6H12O3	MS Ready I	DTXCID70	4: 1/	6 Y	-	_	3	49	/ -

Suspect Screening and Non-Targeted Analysis Workflow

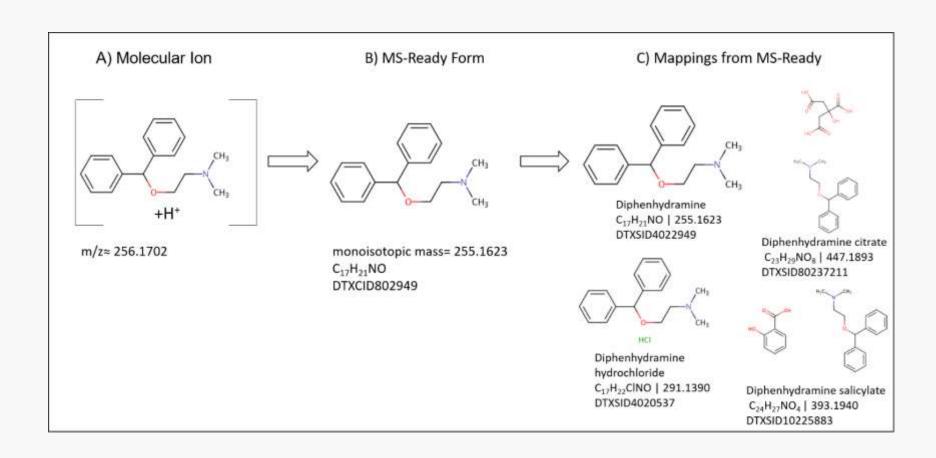
Color Key

Red = Analytical Chemistry

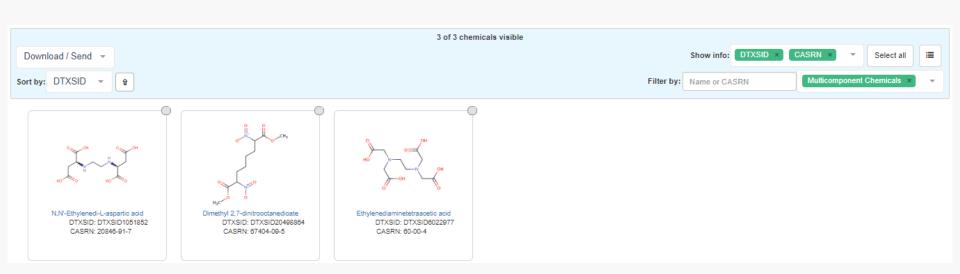
Blue = Data Processing & Analysis

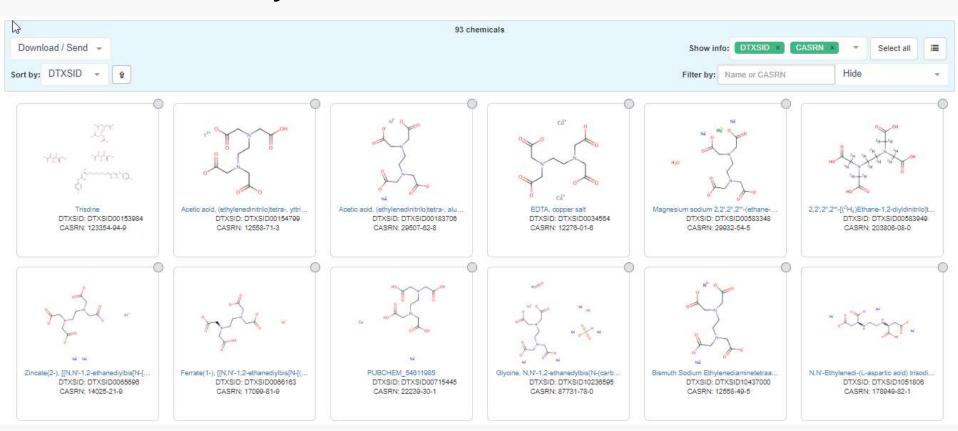

Purple = Mathematical & QSPR Modeling

Green = Informatics & Web Services


The Dashboard to Support MS-Analysis

Specific Data-Mappings "MS-Ready Structures"




Input Formula: C10H16N2O8

Exact Formula 6

- Same Input Formula: C10H16N2O8
- MS Ready Formula Search: 93 Chemicals

93 chemicals returned in total

- Only 7 of the 93 are single component chemicals
- Only 4 of the 93 are non-isotope-labeled
- 3 are neutral compounds and 1 is charged

Complexity to Simplicity 93 Chemicals – 7 in EPAHFR

											1	
1	INPUT	DTXCID INDIVID	FORMULA SMILES (DTXSID	CASRN	EXPOCAST N	EXPOCAST	DATA SOURCITOXVAL	TOXCAST	TOXCAST	# OF PUBMED	PUBCHEM	EPAHFR
2			C10H16N2COC(=O)CI DTXSID6022977	60-00-4	7.96e-05	Υ	71 Y	2.65	3/113	25251		
		DTXCID902977	C10H16N2(OC(=O)CI DTXSID9027073		-	-	41 Y	-	-	25251	56	Υ
4	C10H16N2O8	DTXCID902977	C10H16N2(OC(=O)CI DTXSID3026350		-	-	37 Y	-	-	-	57	Υ
5	C10H16N2O8	DTXCID902977	C10H16N2(OC(=O)C) DTXSID7020556	150-38-9	-	-	30 Y	-	-	-	33	Υ
6	C10H16N2O8	DTXCID902977	C10H16N2(OC(=O)CI DTXSID5049609	67989-88-2	-	-	20 Y	-	-	-	8	Υ
7	C10H16N2O8	DTXCID902977	C10H16N2(OC(=O)C) DTXSID5049576	6381-92-6	-	-	19 Y	-	-	25251	31	Υ
8	C10H16N2O8	DTXCID902977	C10H16N2(OC(=O)C) DTXSID0034564		-	-	11 -	-	-	-	8	Υ
9	C10H16N2O8	DTXCID902977	C10H16N2(OC(=O)C) DTXSID5027774	15708-41-5	-	-	48 Y	1.98	6/303	241	53	
10	C10H16N2O8	DTXCID902977	C10H16N2(OC(=O)C) DTXSID2036409	62-33-9	4.64e-06	Υ	37 Y	0.0	0/64	25251	42	-
11	C10H16N2O8	DTXCID00197424	C10H16N2COC(=O)CCDTXSID1051852	20846-91-7	-	-	36 Y	-	-	89	25	-
12	C10H16N2O8	DTXCID902977	C10H16N2COC(=O)CN DTXSID6042107	15375-84-5	-	-	25 Y	-	-	97	25	-
13	C10H16N2O8	DTXCID902977	C10H16N2COC(=O)C1 DTXSID3036442	5964-35-2	-	-	23 Y	-	-	25251	25	-
14	C10H16N2O8	DTXCID00197424	C10H16N2COC(=O)CCDTXSID1051806	178949-82-1	-	-	22 Y	-	-	-	5	-
15	C10H16N2O8	DTXCID902977	C10H16N2COC(=O)Cl DTXSID0065696	14025-21-9	-	-	22 Y	-	-	-	43	-
16	C10H16N2O8	DTXCID902977	C10H16N2COC(=O)Cl DTXSID9027813	20824-56-0	-	-	21 Y	-	-	-	12	-
17	C10H16N2O8	DTXCID902977	C10H16N2COC(=O)Cl DTXSID9027815	21265-50-9	-	-	20 Y	-	-	241	24	-
18	C10H16N2O8	DTXCID902977	C10H16N2COC(=O)Cl DTXSID5058272	17421-79-3	-	-	19 Y	-	-	25251	25	-
19	C10H16N2O8	DTXCID902977	C10H16N2COC(=O)Cl DTXSID3058612	2001-94-7	-	-	18 Y	-	-	25251	19	-
20	C10H16N2O8	DTXCID902977	C10H16N2(OC(=O)C) DTXSID8027820	22473-78-5	-	-	16 Y	-	-	-	11	-
21	C10H16N2O8	DTXCID902977	C10H16N2COC(=O)Cl DTXSID8058324	17572-97-3	-	-	15 -	-	-	-	36	-
22	C10H16N2O8	DTXCID902977	C10H16N2(OC(=O)C) DTXSID8028343	67859-51-2	-	-	14 Y	-	-	-	5	-
23	C10H16N2O8	DTXCID902977	C10H16N2COC(=O)Cl DTXSID4051328	13235-36-4	-	-	14 -	-	-	-	18	-
24	C10H16N2O8	DTXCID902977	C10H16N2COC(=O)Cl DTXSID6070980	68015-77-0	-	-	14 Y	-	-	-	13	-
25	C10H16N2O8	DTXCID902977	C10H16N2COC(=O)Cl DTXSID9058317	15934-01-7	-	-	11 -	-	-	-	5	-
26	C10H16N2O8	DTXCID902977	C10H16N2COC(=O)Cl DTXSID0066163	17099-81-9	-	-	11 -	-	-	241	14	-
27	C10H16N2O8	DTXCID902977	C10H16N2(OC(=O)C) DTXSID1068988	54959-35-2	-	-	11 -	-	-	241	14	-
28	C10H16N2O8	DTXCID902977	C10H16N2(OC(=O)C) DTXSID5074266	60816-63-9	-	-	11 -	-	-	1	10	-
29	C10H16N2O8		C10H16N2(OC(=O)C) DTXSID4048197		-	-	10 -	-	-	-	28	-
	C10H16N2O8		C10H16N2(OC(=O)C) DTXSID2065830		-	-	10 -	-	-	47	_	-
	C10H16N2O8		C10H16N2(OC(=O)C) DTXSID70189997		-	-	10 -	-	-	25298	26	-
	C10H16N2O8		C10H16N2(OC(=O)C) DTXSID7051420		-	-	9 -	-	-	-	4	
	C10H16N2O8		C10H16N2(OC(=O)C) DTXSID2051425		-	-	8 Y	-	-	-	_	-
	C10H16N2O8		C10H16N2(OC(=O)C) DTXSID7051426		-	-	8 Y	-	-	-	5	-
	C10H16N2O8		C10H16N2(OC(=O)C) DTXSID2051427		-	-	8 Y	-	-	-	-	-
	C10H16N2O8		C10H16N2COC(=O)CI DTXSID3058741		-	-	8 Y	-	-	-	31	
	C10H16N2O8		C10H16N2COC(=O)CI DTXSID6065925		-	-	8 -	-	-	-	19	
	C10H16N2O8		C10H16N2COC(=O)CI DTXSID20217976		-	-	8 -	-	-	-	13	
	C10H16N2O8		C10H16N2COC(=O)CI DTXSID5065807		-	-	7 -	-	-	-	12	
	C10H16N2O8		C10H16N2COC(=O)CI DTXSID6069408		-	-	7 -	-	-	-	12	
	C10H16N2O8		C10H16N2COC(=O)CI DTXSID00153984		-	-	7 -	-	-	2		
	C10H16N2O8		C10H16N2COC(=O)CI DTXSID70190705		-	-	7 -	-	-	6		-
43	C10H16N2O8	DTXCID902977	C10H16N2(OC(=O)CNDTXSID7051424	67401-50-7	-	-	6 -	-	-	-	4	-

Complexity to Simplicity 93 Chemicals – 7 in the list

Structure	DTXSID	Preferred Name	CASRN	QC Level	CPDat Count	Number of Sources	PubChem Data Source	PubMed Data Source	Monoisotopi Mass	С
Ci.	DTXSID0034564	EDTA, copper salt	12276-01-6	Level 1		11	8	0	413.918561	0
ni oni	DTXSID3026350	Ethylenediaminetetraacetic acid tetrasodium salt	64-02-8	Level 1	1227	37	57	0	380.018442	0
HO HO	DTXSID5049576	Disodium ethylenediaminetetraacetate dihydrate	6381-92-6	Level 1	93	19	31	25251	372.075683	0
m } "	DTXSID5049609	Ethylenediaminetetraacetic acid, diammonium copper salt	67989-88-2	Level 2	9	20	8	0	387.057712	
	DTXSID6022977	Ethylenediaminetetraacetic acid	60-00-4	Level 1	346	71	158	25251	292.090665	
nd red red	DTXSID7020556	Trisodium ethylenediaminetetraacetate	150-38-9	Level 1	85	30	33	0	358.036498	
	DTXSID9027073	Ethylenediaminetetraacetic acid, disodium salt	139-33-3	Level 1	1358	41	56	25251	336.054554	0

Searching batches Formula (or mass) searching

	<u> </u>	\	i i i a c				_
4	Α	В	С	D	Е	F	G
	INPUT	DTXSID	CASRN	PREFERRED NAME	MOL FORMULA	MONOISOTOPIC MASS	
	C14H22N2O3	DTXSID2022628	29122-68-7		C14H22N2O3	266.163042576	46
3	C14H22N2O3	DTXSID0021179	6673-35-4		C14H22N2O3	266.163042576	32
4	C14H22N2O3	DTXSID4048854	841-73-6		C14H22N2O3		20
	C14H22N2O3	DTXSID1045407	13171-25-0		C14H24Cl2N2O3		19
6	C14H22N2O3	DTXSID0045753	56715-13-0		C14H22N2O3		19
7	C14H22N2O3	DTXSID2048531	5011-34-7		C14H22N2O3	266.163042576	14
8	C14H22N2O3	DTXSID10239405			C14H22N2O3		12
	C14H22N2O3			. , , , , , , , , , , , , , , , , , , ,	C14H22N2O3	266.163042576	7
	C14H22N2O3	DTXSID4020111	51706-40-2	,	C14H23CIN2O3	302.1397203	6
11	C14H22N2O3		51963-82-7	Benzenamine, 2,5-diethoxy-4-(4-morpholinyl)-	C14H22N2O3	266.163042576	5
			154-21-2	,	C18H34N2O6S	406.213757997	35
		DTXSID7047803	859-18-7		C18H35CIN2O6S		22
					C18H35CIN2O6S	442.1904357	1
	C10H12N2O	DTXSID1047576	486-56-6		C10H12N2O	176.094963014	40
	C10H12N2O	DTXSID8075330	50-67-9		C10H12N2O	176.094963014	22
17	C10H12N2O	DTXSID8044412	2654-57-1	4-Methyl-1-phenylpyrazolidin-3-one	C10H12N2O		18
18	C10H12N2O	DTXSID80165186	153-98-0	Serotonin hydrochloride	C10H13CIN2O		11
19	C10H12N2O	DTXSID2048870	29493-77-4	(4R,5S)-4-methyl-5-phenyl-4,5-dihydro-1,3-oxazol-2-amine	C10H12N2O	176.094963014	10
20	C10H12N2O	DTXSID10196105	443-31-2	6-Hydroxytryptamine	C10H12N2O	176.094963014	9
21	C10H12N2O	DTXSID90185693	31822-84-1	1,4,5,6-Tetrahydro-5-phenoxypyrimidine	C10H12N2O	176.094963014	7
22	C10H12N2O	DTXSID40178777	2403-66-9	2-Benzimidazolepropanol	C10H12N2O	176.094963014	7
23	C10H12N2O	DTXSID80157026	13140-86-8		C10H12N2O	176.094963014	6
24	C10H12N2O	DTXSID30205607	570-14-9	4-Hydroxytryptamine	C10H12N2O	176.094963014	6
25	C14H18N4O3	DTXSID5023900	17804-35-2	Benomyl	C14H18N4O3	290.137890456	68
26	C14H18N4O3	DTXSID3023712	738-70-5		C14H18N4O3	290.137890456	51
27	C14H18N4O3	DTXSID40209671	60834-30-2	•	C14H19CIN4O3	326.1145682	8
	C14H18N4O3	DTXSID70204210		Benzenemethanol, 4-((2,4-diamino-5-pyrimidinyl)methyl)-2,		290.137890456	5
	C14H18N4O3	DTXSID20152671		6-Methoxy-4-(3-(N,N-dimethylamino)propylamino)-5,8-quina		290.137890456	4
30	C14H18N4O3	DTXSID30213742		1H-1,2,4-Benzotriazepine-3-carboxylic acid, 4,5-dihydro-4-		290.137890456	3
	C14H18N4O3	DTXSID30219608		2,4-Pyrimidinediamine, 5-((3,4,5-trimethoxyphenyl)methyl)	C14H20N4O4	308.14845514	3
	C14H18N4O3	DTXSID20241155		L-Aspartic acid, compound with 5-((3,4,5-trimethoxyphenyl		423.175398165	3
	C14H18N4O3	DTXSID80241156		L-Glutamic acid, compound with 5-((3,4,5-trimethoxypheny		437.191048229	3
	C14H18N4O3	DTXSID20143781		1H-Pyrido(2,3-e)-1,4-diazepine-2,3,5-trione, 4-(2-(diethylam		290.137890456	3
	C12H11N7		396-01-0		C12H11N7	253.107593382	52
	C12H11N7	DTXSID00204465			C12H11N7	253.107593382	7
	C12H11N7	DTXSID5064621	7300-26-7	.,	C12H9N7	251.091943318	4
	C12H11N7	DTXSID00848025			C12H13N7O4S	351.074973101	9
	C12H11N7	DTXSID50575293			C12H11N7	253.107593382	9
	C8H9NO2	DTXSID2020006	103-90-2		C8H9NO2	151.063328534	75
	C8H0VI∪3	DTYSIDE026667	13/1 20 3	Mothyl 2 aminohonzosto	C8H0VI∪3	151 063338534	En .

Downloadable Data

Home

Advanced Search Batch Search Lists V

Predictions

Downloads Share ▼

Posted: 11/14/2016

DSSTox MS Ready Mapping File

The CompTox Chemistry Dashboard can be used by mass spectrometrists for the purpose of structure identification. A normal formula search would search the exact formula associated with any chemical, whether it include solvents of hydration, salts or multiple components. However, mass spectrometry detects ionized chemical structures and molecular formulae searches should be based on desalted, and desolvated structures with stereochemistry removed. We refer to these as "MS ready structures" and the MSready mappings are delivered as Excel Spreadsheets containing the Preferred Name, CAS-RN. DTXSID, Formula, Formula of the MS-ready structure and associated masses, SMILES and InChl Strings/Keys.

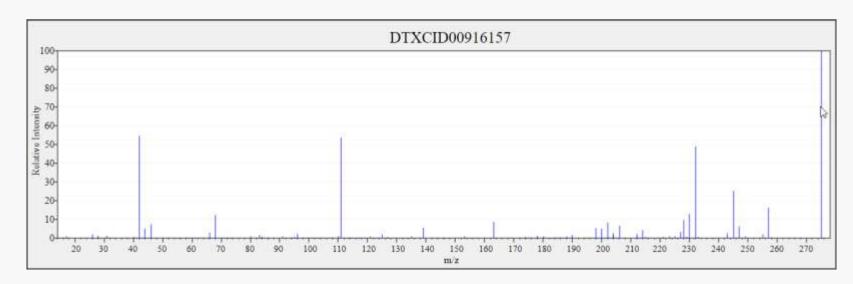
DSSTox SDF File Posted: 12/14/2016

This zip file contains the entire chemical structure collection of over 700,000 chemicals from the DSSTox database contained in one large SDF file. The file contains the structure, The DSSTox Structure Identifier (DTXCID), The DSSTOX Substance Identifier (DTXSID listed as PubChem External Data Source), the associated Dashboard URL, associated synonyms and Quality Control Level details. In order to view an SDF file you will need to have access to the appropriate piece of software to open an SDF files. Examples include ChemAxon JChem, ACD/ChemFolder or ChemDraw.

PHYSPROP Analysis File Posted: 12/14/2016

Work in Progress

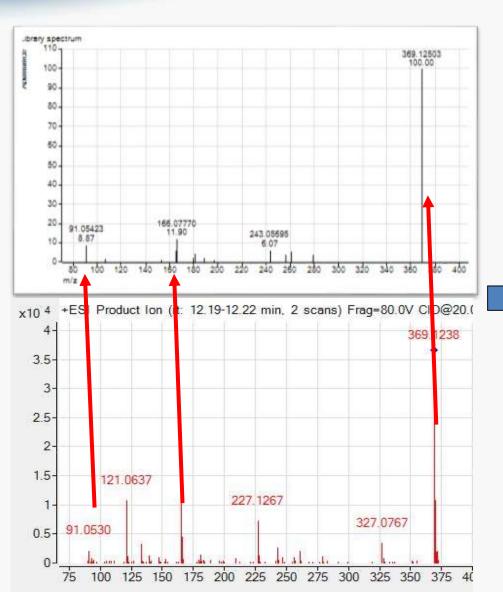
- CFM-ID
 - Viewing and Downloading pre-predicted spectra
 - Search spectra against the database
- Retention Time Index Prediction
- Structure/substructure/similarity search
- Generation of MS-ready structures:
 - Upload file, download results
 - Service based generation


Predicted Mass Spectra

http://cfmid.wishartlab.com/

- MS/MS spectra prediction for ESI+, ESI-, and EI
- Predictions generated and stored for >700,000 structures, to be accessible via Dashboard

Predicted Mass Spectra

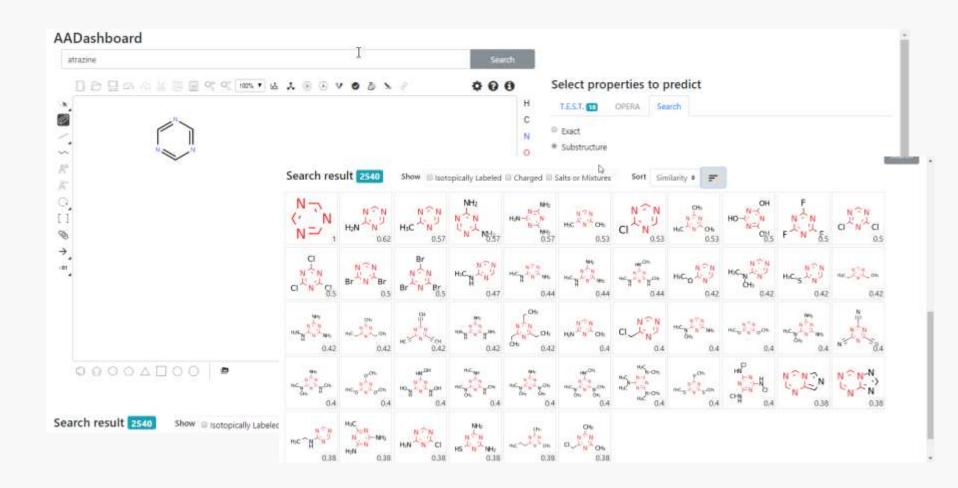


Match

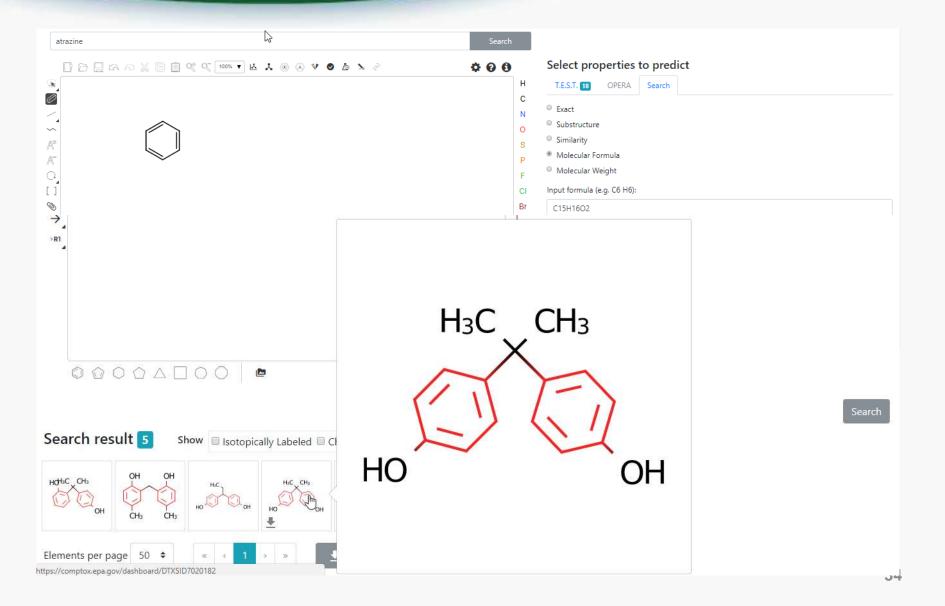
Score

Library Fragmentation Spectra (20eV)

Observed Fragmentation Spectra (20eV)


Search Expt. vs. Predicted Spectra

United States Environmental Protection Home Advanced Search B Agency	atch Search Lists ✔ Predictions Downloads	Share ▼ Q Search all data
	Mass Search ± Min/Max Mass Da ± Error Da ppm Molecular Formula Search Molecular Formula	
	Mass or Formula must be entered before searching spectrum lonization Type ESI+ ▼	
	Spectra Input Single Energy Multiple	
	Peak Match Window: 0.02 Da ppm Search	


Prototype Development

Prototype Development

Conclusion

- The CompTox Chemistry Dashboard provides access to data for ~760,000 chemicals
- Multiple prediction models available for data gap filling
 - OPERA models and TEST models PhysChem and Tox endpoints
 - Models based on in vitro data classification models
 - Generalized Read-Across development in progress
- Real time prediction models rollout has started
- Web services available for some physchem and toxicity endpoints
- 2 years development as a CompTox Integration Hub

Antony Williams

US EPA Office of Research and Development
National Center for Computational Toxicology (NCCT)

Williams.Antony@epa.gov

ORCID: https://orcid.org/0000-0002-2668-4821