

Consensus ranking and fragmentation prediction for identification of unknowns in high resolution mass spectrometry

Antony Williams¹, Andrew D. McEachran², Tommy Cathey³, Tom Transue³ and Jon R. Sobus⁴

National Center for Computational Toxicology, U.S. Environmental Protection Agency, RTP, NC
 2) Oak Ridge Institute of Science and Education (ORISE) Research Participant, RTP, NC
 3) GDIT, Research Triangle Park, North Carolina, United State

4) National Exposure Research Laboratory, U.S. Environmental Protection Agency, RTP, NC

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

Spring 2019 ACS Spring Meeting, Orlando

Suspect Screening and Non-Targeted Analysis Workflows

<u>Color Key</u>

- Red = Analytical Chemistry
- **Blue** = Data Processing & Analysis

Purple = Mathematical & QSPR Modeling

Green = Informatics & Web Services

CompTox Chemicals Dashboard

https://comptox.epa.gov/dashboard

875k Chemical Substances

Sepa United States Environmental Agency	Protection Home Advanced Search Batch Search Lists 🗸 Predictions Downloads	Share 🔻				
WITED STATES	875 Thousand Chemicals					
	Chemicals Product/Use Categories Assay/Gene					
Rommer	Q Search for chemical by systematic name, synonym, CAS number, DTXSID or InChIKey					
AL PROTECT	Identifier substring search See what people are saying, read the dashboard comments! Cite the Dashboard Publication click here					
	Latest News					
	Read more news					
	Journal of Cheminformatics article regarding "MS-Ready structures"					
	March 9th, 2019 at 1:09:45 PM					
A recent article describes "MS-Ready structures", what they are, how they are generated and details regarding the benefits of these structures in navigating structure relationships across the dashboard. The article is published in the Journal of Cheminformatics here.						
	• • • •					

COMMENTS

Access to Chemical Hazard Data

DETAILS	Hazard											
EXECUTIVE SUMMARY	DataType	DataType										
PROPERTIES	Toxic	I Toxicity Value V										
ENV. FATE/TRANSPORT							🛉 Huma	an 💋 Eco				
HAZARD	📥 Down	nload 🔻	Columns N	·								Search query
ADME	More	Priority♥	Type ^{\$}	Subtype 🗢	Risk assessment class 🕈	Value	Units 🗘	Study type‡	Exposure route 🕈	Species 🕈	Subsource \$	Source 🗢
EXPOSURE		7	MEG	Short-term Critical Air	short-term	500	mg/m3	-	inhalation	-	TG 230 Military Exposure Guidelines Table	DOD
BIOACTIVITY		7	MEG	Short-term Marginal Air	short-term	100	mg/m3	-	inhalation		TG 230 Military Exposure Guidelines Table	DOD
SIMILAR COMPOUNDS		7	MEG	Short-term Negligible Air	short-term	15	mg/m3		inhalation		TG 230 Military Exposure Guidelines Table	DOD
GENRA (BETA)		7	MEG	Soil Negligible Soil	chronic	106000	ma/ka	-	soil		TG 230 Military Exposure Guidelines Table	DOD
RELATED SUBSTANCES		7	MEG	Long-Term 51 /d Negligible Water	chronic	7	mg/l	_	oral		TG 230 Military Exposure Guidelines Table	DOD
SYNONYMS		1	Meg	Long-Term, SL/d Negligible Water	chronic	1	ing/ c	-	Utai		TO 250 Military Exposure Guidelines Table	
LITERATURE		6	<u>RfD</u>	•	chronic	0.05	mg/kg-day	•	oral	rat	Wignall	Wignall
		5	<u>RfD</u>	-	chronic	0.05	mg/kg-day	-	-		MSC Table 5	Pennsylvania DEP ToxValues
		4	<u>RfD</u>	-	chronic	0.05	mg/kg-day	chronic	oral	rat	IRIS	Chiu
COMMENTS		3	<u>RfD</u>	-	chronic	0.6	mg/kg-day	-	oral	rat	EPA/ORNL/OLEM	HEAST
		1	<u>RfD</u>		chronic	0.05	mg/kg-day	-	oral	-	EPA NCEA	IRIS

In Vitro Bioassay Screening ToxCast and Tox21

Sources of Exposure to Chemicals

	BISPhenol A 80-05-7 DTXSID70201 Searched by DSSTox Substance Id.	82		
DETAILS		Product and Use C	ategories (PUCs) 🚺	
EXECUTIVE SUMMARY	📩 Download 👻			
PROPERTIES	Columns ~ 10 •			Search query
ENV. FATE/TRANSPORT	Product or Use Categorization	Categorization type	Number of Unique Products	
HAZARD	manufacturing, metals	CPCat Cassette	17	
ADME	adhesive	CPCat Cassette	17	
EXPOSURE		CPCat Cassette	16	
EXPOSORE		CPCat Cassette	12	
		CPCat Cassette	11	
FRODUCTS	USE GATEGORIES	CPCat Cassette	8	
CUEMICAL		CPCat Cassette	8	
CHEMICAL	VEIGHT FRACTION	CPCat Cassette	8	
		CPCat Cassette	7	
CHEMICAL F	-UNCTIONAL USE	CPCat Cassette	6	
TOXICS REL	EASE INVENTORY	First << < 1 2 3 4 5	6 7 8 9 10 > >> Last	
MONITORIN	G DATA			
EXPOSURE	PREDICTIONS			
EXPOSURE	PREDICTIONS			

Link Access

Bisphenol A 80-05-7 | DTXSID7020182

	Searched by Approved	Name.			
DETAILS	General	Toxicology	Publications	Analytical	Prediction
EXECUTIVE SUMMARY	EPA Substance Registry Service	ACTOR	Toxline	POR-IDENT	3 2D NMR HSQC/HMBC Prediction
	Household Products Database	он, DrugPortal	Environmental Health Perspectives	🌢 NEMI: National Environmental Methods Index	Carbon-13 NMR Prediction
PROPERTIES	Chemical Entities of Biological Interest	CCRIS	NIEHS NIEHS	RSC Analytical Abstracts	Proton NMR Prediction
ENV. FATE/TRANSPORT	(ChEBI)	() ChemView	National Toxicology Program	A Tox21 Analytical Data	* ChemRTP Predictor
	PubChem	О стр	G Google Books	MONA: MassBank North America	LSERD
HAZARD	🐺 Chemspider	SechemPortal	G Google Scholar	and mzCloud	
ADME	CPCat	Gene-Tox	G Google Patents	NIST IR Spectrum	
	🤌 DrugBank	HSDB	PPRTVWEB	NST NIST MS Spectrum	
EXPOSURE	hmp HMDB	ToxCast Dashboard 2	PubMed		
BIOACTIVITY	W Wikipedia	LactMed	IRIS Assessments		
	Q MSDS Lookup	International Toxicity Estimates for Risk	EPA HERO		
SIMILAR COMPOUNDS	ChEMBL	ATSDR Toxic Substances Portal	W NIOSH Skin Notation Profiles		
GENRA (BETA)	Q Chemical Vendors	Superfund Chemical Data matrix	KIOSH Pocket Guide		
	CalEPA Office of Environmental Health	NIOSH IDLH Values	C RSC Publications		
RELATED SUBSTANCES	Hazaro Assessment	ACTOR PDF Report	BioCaddie DataMed		
SYNONYMS	NIOSH Chemical Safety Cards	Toxics Release Inventory	2 Springer Materials		
	CC Research Chamicala	CREST	Federal Register		
LITERATURE	W unit data	National Air Toxics Assessment	Regulations.gov		
LINKS	Wikidata Cherry Let Upgende and Alternations Tableau		Bielefeld Academic Search Engine		
	Chemhat Hazaros and Alternatives Toolbox		CORE Literature Search		
COMMENTS	w vvoirram Alpha				
	ScrubChem				
	ECHA Brief Profile				

MassBank of North America https://mona.fiehnlab.ucdavis.edu

Mass/Formula Searching and Metadata Ranking

Advanced Searches Mass Search

Advanced Searches Mass Search

Search Results

MS-Ready Structures for **Formula Search**

Molecular Formula Search 🚺

💿 MS Ready Formula 🚯 🔿 Exact Formula 🚯

Formula

Please use the format of the following example: C6H8O2 or C6H(8-10)O(0-2)

Search Q

"MS-Ready Structures" https://doi.org/10.1186/s13321-018-0299-2

McEachran et al. J Cheminform (2018) 10:45 https://doi.org/10.1186/s13321-018-0299-2 Journal of Cheminformatics

METHODOLOGY

Open Access

"MS-Ready" structures for non-targeted high-resolution mass spectrometry screening studies

Andrew D. McEachran^{1,2*}, Kamel Mansouri^{1,2,3}, Chris Grulke², Emma L. Schymanski⁴, Christoph Ruttkies⁵ and Antony J. Williams^{2*}

pubs.acs.org/est

Open Science for Identifying "Known Unknown" Chemicals

Emma L. Schymanski*^{,†}[©] and Antony J. Williams^{*,‡}[©]

MS-Ready Mappings

MS-Ready Mappings Set

MS-Ready Mappings

• EXACT Formula: C10H16N2O8: 3 Hits

2	O MS I Formula C10H1	Ready Formula 🚯 🧿 Exact	Formula 🕦	
Select all	📩 Download 🔻 Send to B	Batch Search 🛛 Default 👻 🕆 🚺	DTXSID × PubChem ×	3 of 3 chemi
с но Ethy	$h = \frac{1}{2} \int_{C} \frac{1}{2} \int_$	$\begin{array}{c} & \stackrel{\circ}{\rightarrow} \stackrel{\circ}{$	d 2	ethyl 2,7-dinitrooctanedioate DTXSID: DTXSID20498864 PubChem: 5 CPDAT: 0

MS-Ready Mappings

- Same Input Formula: C10H16N2O8
- MS Ready Formula Search: 125 Chemicals

- 125 chemicals returned in total
 - 8 of the 125 are single component chemicals
 - 3 of the 8 are isotope-labeled
 - 3 are neutral compounds and 2 are charged

Candidate ranking using public resources

Data Source Ranking of "known unknowns"

- Mass and/or formula is for an unknown chemical but contained within a reference database
- Most likely candidate chemicals have the most associated data sources, most associated lit. articles or both

dronmental Protection

Is a bigger database better?

C American Society for Mass Spectrometry, 2011

J. Am. Soc. Mass Spectrom. (2012) 23:179–185 DOI: 10.1007/s13361-011-0265-y

Identification of "Known Unknowns" Utilizing Accurate Mass Data and ChemSpider

- ChemSpider was 26 million chemicals then
- Much BIGGER today
- Is bigger better??

Using Metadata for Ranking

- Use available metadata to rank candidates
 - Associated data sources
 - Associated lists in the underlying database
 - Associated data sources in PubChem
 - Specific types (e.g. water, surfactants, pesticides etc.)
 - Number of associated literature articles (Pubmed)
 - Chemicals in the environment the number of products/categories containing the chemical is a very important source of data

Identification ranks for 1783 chemicals using multiple data streams

Comparing Search Performance

CrossMark

Ånal Bioanal Chem (2017) 409:1729–1735 DOI 10.1007/s00216-016-0139-z

RAPID COMMUNICATION

Identifying known unknowns using the US EPA's CompTox Chemistry Dashboard

Andrew D. McEachran¹ · Jon R. Sobus² · Antony J. Williams³

- Dashboard content was 720k chemicals
- Only 3% of ChemSpider size
- What was the comparison in performance?

SAME dataset for comparison

Compound class	Number in class	Average rank	Number of compounds in each position rank-ordered				
			#1	#2	#3	#4	#5+
Pharmaceutical drug	72	1.4	55	9	6	2	
Industrial chemicals	42	5.5	28	6	3		5
Personal care products	8	6.1	3	1			4
Steroid hormones	7	1.0	7				
Perfluorochemicals	6	1.2	5	1			
Pesticides	12	2.3	6	2	3		1
Veterinary drugs	3	1.3	2	1			
Dyes	2	1.0	2				
Food product/natural compounds	4	3.8	2			1	1
Illicit drugs	2	2.0	1		1		
Misc. molecules	3 ^a	1.3	2	1			

How did performance compare?

	Mass-based sear	rching	Formula-based	searching
	Dashboard	ChemSpider	Dashboard	ChemSpider
Average rank position	1.3	2.2 ^a	1.2	1.4
Percent in #1 position	85%	70%	88%	80%

^a Average rank in ChemSpider shown here does not include an outlier where the rank was 201, when added the average rank position is 3.5

For the same 162 chemicals, Dashboard outperforms ChemSpider

Summary statistics and rank-ordered position in the CompTox Chemistry Dashboard and ChemSpider of the 89 compound subset from the Little et al. [7] study

		Average ra	nk	Number in each position rank-ordered				
		(±SD)		#1	#2	#3	#4	#5+
Mass-based	Dashboard	1.2 ± 0.7		77 ^a	5	3	3	
	ChemSpider	2.2 ± 6.1^{b}		68	8	7	1	5
Formula-based	Dashboard	1.1 ± 0.4		78 ^a	8	2		
	ChemSpider	1.3 ± 1.0		77	8	2	1	2

^aOne chemical (tephrosin) not present in the Dashboard

Data Quality is important

Data quality in free web-based databases!

Will the correct Microcystin LR Stand Up? ChemSpider Skeleton Search

United States Environmental Protection

Agency

Comparing ChemSpider Structures

2

<u>393078</u>	t28-,29-,30-,31+,34-,35-,36+, 37- ,38-,40+
57618348	t28-,29-,30-,31+,34-,35-,36+, 37- ,38-,40+
<u>29342071</u>	t28-,29-,30-,31+, 34+ ,35-,36+, 37- ,38-,40+
7987594	t28-, 29?,30? ,31+, 34? ,35-, 36?,37- ,38-, 40?
22900854	t28-, 29?,30+,31-,34+,35+,36-,37- ,38-, 40-
19692240	NONE
2831283	NONE

invironmental Protection

Agency

Comparing ChemSpider Structures

ChemSpiderID	InChIKey	# Stereocenters	# Different
WIKIPEDIA	ZYZCGGRZINLQBL-JCGNTXOTSA-N	10/10	0
CompTox	ZYZCGGRZINLQBL-JCGNTXOTSA-N	10/10	0
<u>4941647</u>	ZYZCGGRZINLQBL-JCGNTXOTSA-N	10/10	0
<u>393078</u>	ZYZCGGRZINLQBL-GWRQVWKTSA-N	10/10	1
<u>57618348</u>	ZYZCGGRZINLQBL-UPPCHHEJSA-N	10/10	1
<u>29342071</u>	ZYZCGGRZINLQBL-IIJTUTQBSA-N	10/10	2
<u>7987594</u>	ZYZCGGRZINLQBL-BESLYTPASA-N	5/10	6
<u>22900854</u>	ZYZCGGRZINLQBL-QAXSDTKVSA-N	9/10	8
<u>19692240</u>	ZYZCGGRZINLQBL-ORZJCNCZSA-N	0/10	10
<u>2831283</u>	ZYZCGGRZINLQBL-UHFFFAOYSA-N	0/10	10

Other Searches

UniChem

Pub Chem About

ZYZCGGRZINLQBL

Treating this query as a text search.

Compounds (17)

Show	Show All entries					
	CMR. Query InChl	src_id	Source	src_compound_id		
	matches	1	ChEMBL	CHEMBL444092		
	matches	4	Guide to Pharmacolog	4735		
	matches	6	KEGG Ligano	<u>C05371</u>		
	matches	7	ChEBI	<u>6925</u>		
	matches	9	ZINC	ZINC000169715525		
	matches	9	ZINC	ZINC000255288110		
	matches	9	ZINC	ZINC000255288111		
	matches	9	ZINC	ZINC000255288112		
	matches	9	ZINC	ZINC000255288113		
	matches	9	ZINC	ZINC000255288114		
	matches	9	ZINC	ZINC000255288115		
	matches	9	ZINC	ZINC000583653042		
	matches	9	ZINC	ZINC000669680403		
	matches	10	eMolecules	<u>26754757</u>		
	matches	10	eMolecules	<u>31239828</u>		
	matches	11	IBM Patent System	DA3C2F25F29692734272194ED0E2C009		
	matches	14	FDA SRS	EQ8332842Y		

Processing thousands of chemical signatures as mass and formula

Batch Searching

 Singleton searches are useful but we work with thousands of masses and formulae!

- Typical questions
 - What is the list of chemicals for the formula $C_x H_y O_z$
 - What is the list of chemicals for a mass +/- error
 - Can I get chemical lists in Excel files? In SDF files?
 - Can I include properties in the download file?
Batch Searching Formula/Mass

Invironmental Protection

Agency

Searching batches using MS-Ready Formula (or mass) searching

1	A	B	C	D	E	F	G	
1	INPUT	DTXSID	CASRN	PREFERRED NAME	MOL FORMULA	MONOISOTOPIC MASS	DATA SOURCES	_
2	C14H22N2O3	DTXSID2022628	29122-68-7	Atenolol	C14H22N2O3	266.163042576	46	
3	C14H22N2O3	DTXSID0021179	6673-35-4	Practolol	C14H22N2O3	266.163042576	32	
4	C14H22N2O3	DTXSID4048854	841-73-6	Bucolome	C14H22N2O3	266.163042576	20	
5	C14H22N2O3	DTXSID1045407	13171-25-0	Trimetazidine dihydrochloride	C14H24Cl2N2O3	338.116398	19	
6	C14H22N2O3	DTXSID0045753	56715-13-0	R-(+)-Atenolol	C14H22N2O3	266.163042576	19	
7	C14H22N2O3	DTXSID2048531	5011-34-7	Trimetazidine	C14H22N2O3	266.163042576	14	
8	C14H22N2O3	DTXSID10239405	93379-54-5	Esatenolol	C14H22N2O3	266.163042576	12	
9	C14H22N2O3	DTXSID50200634	52662-27-8	N-(2-Diethylaminoethyl)-2-(4-hydroxyphenoxy)acetamide	C14H22N2O3	266.163042576	7	
10	C14H22N2O3	DTXSID4020111	51706-40-2	dl-Atenolol hydrochloride	C14H23CIN2O3	302.1397203	6	
11	C14H22N2O3	DTXSID1068693	51963-82-7	Benzenamine, 2,5-diethoxy-4-(4-morpholinyl)-	C14H22N2O3	266.163042576	5	
12	C18H34N2O6S	DTXSID3023215	154-21-2	Lincomycin	C18H34N2O6S	406.213757997	35	
13	C18H34N2O6S	DTXSID7047803	859-18-7	Lincomycin hydrochloride	C18H35CIN2O6S	442.1904357	22	
14	C18H34N2O6S	DTXSID20849438	1398534-62-7	PUBCHEM_71432748	C18H35CIN2O6S	442.1904357	1	
15	C10H12N2O	DTXSID1047576	486-56-6	Cotinine	C10H12N2O	176.094963014	40	
16	C10H12N2O	DTXSID8075330	50-67-9	Serotonin	C10H12N2O	176.094963014	22	
17	C10H12N2O	DTXSID8044412	2654-57-1	4-Methyl-1-phenylpyrazolidin-3-one	C10H12N2O	176.094963014	18	
18	C10H12N2O	DTXSID80165186	153-98-0	Serotonin hydrochloride	C10H13CIN2O	212.0716407	11	
19	C10H12N2O	DTXSID2048870	29493-77-4	(4R,5S)-4-methyl-5-phenyl-4,5-dihydro-1,3-oxazol-2-amine	C10H12N2O	176.094963014	10	
20	C10H12N2O	DTXSID10196105	443-31-2	6-Hydroxytryptamine	C10H12N2O	176.094963014	9	
21	C10H12N2O	DTXSID90185693	31822-84-1	1,4,5,6-Tetrahydro-5-phenoxypyrimidine	C10H12N2O	176.094963014	7	
22	C10H12N2O	DTXSID40178777	2403-66-9	2-Benzimidazolepropanol	C10H12N2O	176.094963014	7	
23	C10H12N2O	DTXSID80157026	13140-86-8	N-Cyclopropyl-N'-phenylurea	C10H12N2O	176.094963014	6	
24	C10H12N2O	DTXSID30205607	570-14-9	4-Hydroxytryptamine	C10H12N2O	176.094963014	6	
25	C14H18N4O3	DTXSID5023900	17804-35-2	Benomyl	C14H18N4O3	290.137890456	68	
26	C14H18N4O3	DTXSID3023712	738-70-5	Trimethoprim	C14H18N4O3	290.137890456	51	
27	C14H18N4O3	DTXSID40209671	60834-30-2	Trimethoprim hydrochloride	C14H19CIN4O3	326.1145682	8	
28	C14H18N4O3	DTXSID70204210	55687-49-5	Benzenemethanol, 4-((2,4-diamino-5-pyrimidinyl)methyl)-2,	C14H18N4O3	290.137890456	5	
29	C14H18N4O3	DTXSID20152671	120075-57-2	6-Methoxy-4-(3-(N,N-dimethylamino)propylamino)-5,8-quina	C14H18N4O3	290.137890456	4	
30	C14H18N4O3	DTXSID30213742	63931-79-3	1H-1,2,4-Benzotriazepine-3-carboxylic acid, 4,5-dihydro-4-	C14H18N4O3	290.137890456	3	
31	C14H18N4O3	DTXSID30219608	69449-07-6	2,4-Pyrimidinediamine, 5-((3,4,5-trimethoxyphenyl)methyl)	C14H20N4O4	308.14845514	3	
32	C14H18N4O3	DTXSID20241155	94232-27-6	L-Aspartic acid, compound with 5-((3,4,5-trimethoxyphenyl	C18H25N5O7	423.175398165	3	
33	C14H18N4O3	DTXSID80241156	94232-28-7	L-Glutamic acid, compound with 5-((3,4,5-trimethoxypheny	C19H27N5O7	437.191048229	3	
34	C14H18N4O3	DTXSID20143781	101204-93-7	1H-Pyrido(2,3-e)-1,4-diazepine-2,3,5-trione, 4-(2-(diethylam	C14H18N4O3	290.137890456	3	
35	C12H11N7	DTXSID6021373	396-01-0	Triamterene	C12H11N7	253.107593382	52	
36	C12H11N7	DTXSID00204465	5587-93-9	Ampyrimine	C12H11N7	253.107593382	7	
37	C12H11N7	DTXSID5064621	7300-26-7	Benzenamine, 4-azido-N-(4-azidophenyl)-	C12H9N7	251.091943318	4	
38	C12H11N7	DTXSID00848025	90293-82-6	Sulfuric acid6-phenylpteridine-2,4,7-triamine (1/1)	C12H13N7O4S	351.074973101	1	
39	C12H11N7	DTXSID50575293	92310-83-3	(1E)-N-Phenyl-1,2-bis(1H-1,2,4-triazol-1-yl)ethan-1-imine	C12H11N7	253.107593382	1	
40	C8H9NO2	DTXSID2020006	103-90-2	Acetaminophen	C8H9NO2	151.063328534	75	
41	C8H9NO2	DTYSID6026667	13/1 20/3	Mothyl 2 aminohonzoato	C8H9NO2	161 063328634	60	

Related Searches to Support Mass Spectrometry

Find me "related structures" Formula-Based Search

Wikipedia

Morphine is a pain medication of the opiate family which is found naturally in a number of plants and animals. It acts directly on the central nervous system (CNS) to decrease the feeling of pain. It can be taken for both acute pain and chronic pain. It is frequently used for pain from myocardial infarction and during labor. It can be given by mouth, by injection into a muscle, by injection under the skin, intravenously, injection into the space around the

Read more

Select Chemicals of Interest

Find me "related structures" Based on Structure Similarity

•

•

•

-

Find me "related structures" Based on Structure Similarity

Find me "related structures" Structure Similarity – sort on mass

Literature Searching

Abstract Sifter

1) Select PubMed starting point query then 2) click on Retrieve.

Select a Query Term	1	Retrieve Articles
Select a Query Term	J	
Hazard		
Fate and Transport		
Metabolism/PK/PD		
Chemical Properties		
Exposure		
Mixtures		
Male Reproduction		
Androgen Disruption		
Female Reproduction		
GeneTox		
Cancer		
Clinical Trials		
Embryo and embryonic development		
Child (infant through adolescent)		
Dust and Exposure		
Food and Exposure		
Water and Exposure		
Algae		
Disaster / Emergency		

Optionally, edit the query before retrieving.

"57-27-2" OR "Morphine"

Literature Searching

Child (Intant through adolescent)		
Dust and Exposure		-
Food and Exposure		
Water and Exposure	N	
Algae	W	
Disaster / Emergency		

voptionally, edit the query before retrieving.

("57-27-2" OR "Morphine") AND ((water OR groundwater OR drinking water) AND Environmental Exposure)

Literature Searching

37 of 37 articles loaded...

10													
wastewater Spectrometry EPA		Clea	ar Terms		Download / Send to V	Excel	0						
	wastewater	Spectrometry	y ↓ EPA	Total	PMID	Year	Title			Authors	Journal	Rev	*
	4	2	0	6	29274731	2017	Simultar	neous analysis of opioid analgesics	and thei	Krizman-Matasic; Kostanjevecki; Ahel; Terzic	Journal of chromatography. A		
	0	1	0	1	25768972	2015	Evaluati	ng external contamination of polybro	ominate	Poon; Aleksa; Carnevale; Kapur; Goodyer; Koren	Therapeutic drug monitoring		
	0	1	0	1	22544551	2012	Spatial of	listribution of illicit drugs in surface v	waters o	Vazquez-Roig; Andreu; Blasco; Morillas; Picó	Environmental science and pollution research inter		
	1	1	0	2	20801487	2010	Analysis	of llicit and illicit drugs in waste, su	rface an	Berset; Brenneisen; Mathieu	Chemosphere		
	1	1	0	2	17935751	2007	Illicit dru	gs, a novel group of environmental	contami	Zuccato; Castiglioni; Bagnati; Chiabrando; Grassi;	Water research		
	2	1	1	4	17607391	2007	Using er	nvironmental analytical data to estim	nate lev	Bones; Thomas; Paull	Journal of environmental monitoring : JEM		
	3	1	2	6	17180984	2006	Simultar	neous determination of psychoactive	e drugs	Hummel; Löffler; Fink; Ternes	Environmental science & technology		
	6	0	0	6	30583189	2018	Assessn	nent of drugs of abuse in a wastewa	ater trea	Kumar; Tscharke; O'Brien; Mueller; Wilkins; Padhye	The Science of the total environment		
	0	0	3	3	30488421	2018	Effect of	enriched environment during adole	scence	Mohammadian; Najafi; Miladi-Gorji	Developmental psychobiology		
	3	0	0	3	29574368	2018	Estimati	on of the consumption of illicit drugs	during	Foppe; Hammond-Weinberger; Subedi	The Science of the total environment		
	1	0	0	1	28787791	2017	Evaluati	on of in-sewer transformation of sele	ected illi	Gao; Banks; Li; Jiang; Lai; Mueller; Thai	The Science of the total environment		
	9	0	0	9	28472697	2017	Occurre	nce and fate of illicit drugs and phar	maceuti	Causanilles; Ruepert; Ibáñez; Emke; Hernández; d	The Science of the total environment		
	0	0	0	0	28010888	2016	Dose-de	pendent effects of morphine on lipo	polysac	Mottaz; Schönenberger; Fischer; Eggen; Schirmer;	Environmental pollution (Barking, Essex : 1987)		
	0	0	0	0	27746311	2016	Effects of	of voluntary exercise on the viability,	prolifer	Haydari; Safari; Zarbakhsh; Bandegi; Miladi-Gorji	Neuroscience letters		
	0	0	0	0	27261879	2016	Genotox	ic effects induced by the exposure t	to an en	Parolini; Magni; Castiglioni; Binelli	Ecotoxicology and environmental safety		
	3	0	0	3	27179320	2016	Tempora	al trends in drug use in Adelaide, So	outh Aus	Tscharke; Chen; Gerber; White	The Science of the total environment		-

The benefits of building chemical lists

Chemical Lists

Copy Filtered Lists URL

mass

 Home
 Advanced Search
 Batch Search
 Lists
 Predictions
 Downloads

 Lists of Chemicals
 Lists of Chemicals
 List of Assays
 List of Assays

📩 Download 🔻

Columns ~

List Acronym 🗘	List Name 🗘	Last Updated 🗘	Number of Chemicals 🕈	List Description 🗘
HDXEXCH	MASSPECDB: Hydrogen Deuterium Exchange Standard Set - Under HDX Conditions	2018-11-07	592	Observed species (deuterated and undeuterated) from the HDXNOEX list under hydrogen deuterium exchange conditions (Ruttkies, Schymanski et al. in prep.)
HDXNOEX	MASSPECDB: Hydrogen Deuterium Exchange Standard Set - No Exchange	2018-11-07	765	Environmental standard set used to investigate hydrogen deuterium exchange in small molecule high resolution mass spectrometry (Ruttkies, Schymanski et al. in prep.)
MASSBANKEUSP	MASSPECDB: MassBank.EU Collection: Special Cases	2017-07-16	263	The MassBank.EU list contains curated chemicals (Schymanski/Williams) associated with the literature/tentative/unknown/SI spectra available on MassBank.EU that are not available as part of the full MassBank collection of reference standard spectra.
MASSBANKREF	MASSPECDB: MassBank Reference Spectra Collection	2017-07-13	1267	This MassBank list contains chemicals associated with the full MassBank collection of reference standard spectra available on MassBank.EU, MassBank.JP and MassBank of North America as well as the Open Data collection, curated by Williams/Schymanski.
MYCOTOXINS	MASSPECDB: Mycotoxins from MassBank.EU	2017-08-02	88	This is a set of mycotoxins, initiated by the contribution of spectra of 90 mycotoxins to MassBank.EU by Justin Renaud and colleagues from Agriculture and Agri-Food Canada, Government of Canada

EPAHFR: Hydraulic Fracturing

49

6

WATER|EPA; Chemicals associated with hydraulic fracturing

🔍 Search EPAHFR Chemicals

Identifier substring search

List Details

Description: Chemicals used in hydraulic fracturing fluids and/or identified in produced water from 2005-2013, corresponding to chemicals listed in Appendix H of EPA's Hydraulic Fracking Drinking Water Assessment Final Report (Dec 2016). Citation: U.S. EPA, Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report). U.S. Environmental Protection Agency, Washington, D.C. EPA/600/R-16/236F, 2016. <u>https://www.epa.gov/hfstudy</u>

*Note that Appendix H chemical listings in Tables H-2 and H-4 were mapped to current DSSTox content, which has undergone additional curation since the publication of the original EPA HF Report (Dec 2016). In the few cases where a Chemical Name and CASRN from the original report map to distinct substances (as of Jan 2018), both were included in the current EPAHFR chemical listing for completeness; additionally, 34 previously unmapped chemicals in Table H-5 are now registered in DSSTox (all but 2 assigned CASRN) and, thus, have been added to the current EPAHFR listing. **Number of Chemicals:** 1640

2 Cſ NĤa NH. OH Alkylbenzenesulfonate linear Ammonium chloride Ammonium hydroxide Diammonium citrate DTXSID: DTXSID3020041 DTXSID: DTXSID0020078 DTXSID: DTXSID5020079 DTXSID: DTXSID4020080 PubChem: 82 PubChem: 0 PubChem: 19 PubChem: 83 CPDAT: 83 CPDAT: 260 CPDAT: 18 CPDAT: 857

PFAS lists of Chemicals

Select List

📥 Download 🔻 🛛 Columns 🗸

PFAS

🖪 Copy Filtered Lists URL

List Acronym \$	List Name 🗘	Last Updated 🗘	Number of Chemicals 🕈	List Description 🗘
EPAPFAS75S1	PFAS EPA: List of 75 Test Samples (Set 1)	2018-06-29	74	PFAS list corresponds to 75 samples (Set 1) submitted for initial testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.
EPAPFAS75S2	PFAS EPA: List of 75 Test Samples (Set 2)	2019-02-21	75	PFAS list corresponds to a second set of 75 samples (Set 2) submitted for testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.
EPAPFASCAT	PFAS EPA Structure- based Categories	2018-06-29	64	List of registered DSSTox "category substances" representing PFAS categories created using ChemAxon's Markush structure-based query representations.
EPAPFASINSOL	PFAS EPA: Chemical Inventory Insoluble in DMSO	2018-06-29	43	PFAS chemicals included in EPA's expanded ToxCast chemical inventory found to be insoluble in DMSO above 5mM.
EPAPFASINV	PFAS EPA: ToxCast Chemical Inventory	2018-06-29	430	PFAS chemicals included in EPA's expanded ToxCast chemical inventory and available for testing.
EPAPFASRL	PFAS EPA: Cross-Agency Research List	2017-11-16	199	EPAPFASRL is a manually curated listing of mainly straight-chain and branched PFAS (Per- & Poly-fluorinated alkyl substances) compiled from various internal, literature and public sources by EPA researchers and program office representatives.
PFASKEMI	PFAS: List from the Swedish Chemicals Agency (KEMI) Report	2017-02-09	2416	Perfluorinated substances from a Swedish Chemicals Agency (KEMI) Report on the occurrence and use of highly fluorinated substances.
PFASMASTER	PFAS Master List of PFAS Substances	2018-07-26	5061	PFASMASTER is a consolidated list of PFAS substances spanning and bounded by the below lists of current interest to researchers and regulators worldwide.
PFASOECD	PFAS: Listed in OECD Global Database	2018-05-16	4729	OECD released a New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances, (PFASs) listing more than 4700 new PFAS
PFASTRIER	PFAS Community- Compiled List (Trier et al., 2015)	2017-07-16	597	PFASTRIER community-compiled public listing of PFAS (Trier et al, 2015)

Ongoing Research in Progress

Suspect Screening and Non-Targeted Analysis Workflow

<u>Color Key</u>

- Red = Analytical Chemistry
- **Blue** = Data Processing & Analysis

Purple = Mathematical & QSPR Modeling

Green = Informatics & Web Services

- Predicted Spectra for candidate ranking
 - Viewing and Downloading pre-predicted spectra
 - Search spectra against the database

Predicted Mass Spectra

http://cfmid.wishartlab.com/

- February 2015, Volume 11, <u>Issue 1</u>, pp 98–110 | <u>Cite as</u>

Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification

Authors and affiliations

Felicity Allen 🖂 , Russ Greiner, David Wishart

Authors

- MS/MS spectra prediction for ESI+, ESI-, and EI
- Predictions generated and stored for >800,000 structures, to be accessible via Dashboard

Search Expt. vs. Predicted Spectra

SEPA United States Environmental Protection Agency	Home Advanced Search Batch Search Lists 🛩 Predictions Downloads	Share - Q. Search all data
	Non Target Analysis Prototype	Â
	Mass Search <u>± Min/Max</u> 321.138493476 Da <u>± 0.0000002 Da ppm</u>	
	Molecular Formula Search Molecular Formula	
	Mass or Formula must be entered before searching spectrum Ionization Type ESI+ ESI+ ESI- EI Spectra Input	
	Single Energy Multiple 304.1332052 11.6199475 • 198.0913404 7.306439699 • 123.0440559 6.538348292 • 196.0756904 6.269463115 • 216.1019051 4.700461978 •	
	Peak Match Window: 0.02 Da ppm	

Search Expt. vs. Predicted Spectra

United States Environmental Protection	Home Advanced Search Batch Search Lists ✔ Predictions Downloads	Share 🔻	Q Search all data
Spectra sing	Inpu Gle Ener Chemical Structure ID	Score (10eV)	
304.13320 198.09134 123.04405 198.07569	52 11.61 04 7.30 59 6.53 04 5.26	0.22	
218.10190	DTXCID101181567	0.19	
Peak Ma Search	atch DTXCID50879086	0.17	
TSV CSV Excel	DTXCID60686349	0.14	
Chemical Structure II DTXCID101048191	DTXCID00830900	0.13	of Scores
DTXCID101181567 DTXCID50879086	DTXCID10971176	0.12	
DTXCID60686349 DTXCID00830900	DTXCID60301242	0.12	
DTXCID10971178 DTXCID60301242	DTXCID40703048	0.11	
DTXCID60349982	DTXCID60349982	0.11	
DTXCID10316649 Showing 1 to 10 of 38 entri	• DTXCID10316649	0.09	1 2 3 4 Next

Spectral Viewer Comparison

- Critical Assessment of Small Molecule Identification
 - Training data= 312 peak lists (from 285 substances)
 - 234 MS/MS in positive mode
 - 58 in negative mode
 - Challenge Data= 208 peak lists (from 188 substances)
 - 127 in positive mode
 - 81 in negative mode
- Precursor ion search window= 15 ppm
- Fragment ion match threshold= 0.02 Da
- Candidates limited to Dashboard results within precursor ion search window – early work on 765K ONLY

Testing CFM-ID matching

CASMI 2016 Contest Challenge Set (n=208)

CFM-ID only

CFM-ID +DSSTox Data Sources

	# Identified	% of Total
#1 Hits	89	43%
Тор 5	154	74%
Тор 10	174	84%
Тор 20	190	91%

	# Identified	% of Total
#1 Hits	154	74%
Тор 5	195	94%
Тор 10	198	95%
Тор 20	202	97%

Work in Progress

- Predicted Spectra for candidate ranking
 - Viewing and Downloading pre-predicted spectra
 - Search spectra against the database
- Retention Time Index Prediction

Retention Time Prediction for Ranking

Talanta

Volume 182, 15 May 2018, Pages 371-379

A comparison of three liquid chromatography (LC) retention time prediction models

Andrew D. McEachran ^{a, b} 은 떼, Kamel Mansouri ^{a, b, 1} 떼, Seth R. Newton ° 떼, Brandiese E.J. Beverly ^{a, c, 2} 떼, Jon R. Sobus ° 떼, Antony J. Williams ^b 은 떼

Show more

https://doi.org/10.1016/j.talanta.2018.01.022

Get rights and content

Moving to Relative Retention Times

Journal of Hazardous Materials

Volume 363, 5 February 2019, Pages 277-285

Development and application of retention time prediction models in the suspect and non-target screening of emerging contaminants

Reza Aalizadeh, Maria-Christina Nika, Nikolaos S. Thomaidis Ӓ 🖾

Show more

https://doi.org/10.1016/j.jhazmat.2018.09.047

Get rights and content

Work in Progress

- Predicted Spectra for candidate ranking
 - Viewing and Downloading pre-predicted spectra
 - Search spectra against the database
- Retention Time Index Prediction
- Structure/substructure/similarity search

Prototype Development

Prototype Development

Work in Progress

- Predicted Spectra for candidate ranking
 - Viewing and Downloading pre-predicted spectra
 - Search spectra against the database
- Retention Time Index Prediction
- Structure/substructure/similarity search
- Access to API and web services for programmatic access

API services and Open Data

- Groups waiting on our API and web services
- Mass Spec companies instrument integration
- Release will be in iterations but for now our data are available

1	DSSTox Identifie	rs file is in Excel format and inc	cludes the CAS Number, DSSTox substance identifier (DTXSID) and the Preferred Name.			
2	26148-68-5	DTXSID7020001	A-alpha-C			
3	107-29-9	DTXSID2020001	A cetaldebyde oxime			
4	60-35-5	DTXSID2020001	Acetandide			
5	103-90-2	DTXSID2020006	Acetaminophen			
6	968-81-0	DTXSID7020007	Acetohexamide			
7	18523-69-8	DTXSID2020008	Acetone[4-(5-nitro-2-furyl)-2-thiazolyl] hydrazone			
8	75-05-8	DTXSID7020009	Acetonitrile			
9	127-06-0	DTXSID6020010	Acetoxime			
10	65734-38-5	DTXSID6020012	N'-Acetyl-4-(hydroxymethyl) phenylhydrazine			
DSSTox MS Ready Mapping File Posted: 11/14/2016 The CompTox Chemistry Dashboard can be used by mass spectrometrists for the purpose of structure identification. A normal formula search would search the exact formula associated with any chemical, whether it include solvents of hydration, salts or multiple components. However, mass spectrometry detects ionized chemical structures and molecular formulae searches should be based on desalted, and desolvated structures with stereochemistry removed. We refer to these as "MS ready structures" and the MS-ready mappings are delivered as Excel Spreadsheets containing the Preferred Name, CAS-RN. DTXSID, Formula, Formula of the MS-ready structure and associated masses, SMILES and InChI Strings/Keys.						

Benefiting the community with Open Data

NORMAN Suspect List Exchange

https://www.norman-network.com/?q=node/236

NORMAN

Network of reference laboratories, research centres and related organisations for monitoring of emerging environmental substances

Wastewater Suspect List based on Swedish Product Data	Wastewater Suspect List Original File with Mapped DTXSIDs (12/02/2019)	KEMIWWSUS InChlKeys (12/02/2019)	A prioritized list of 1,123 substances relevant for wastewater based on Swedish product registry data, including scores. Provided by Stellan Fischer, KEMI.
Algal toxins list from CompTox	ALGALTOX XLSX, CSV (14/02/2019) CompTox ALGALTOX List	ALGALTOX InChlKeys (14/02/2019)	List of algal toxins (generated during blooms) from the CompTox Chemicals Dashboard.
CCL 4 Chemical Candidate List	CCL4 XLSX, CSV (14/02/2019) CompTox CCL4 List	CCL4 InChIKeys (14/02/2019)	Contaminants that are not (yet) regulated in the USA but are known or anticipated to occur in public water systems; from CompTox.
Hydrogen Deuterium Exchange (HDX) Standard Set	HDXNOEX XLSX, CSV (14/02/2019) CompTox HDXNOEX List CompTox HDXEXCH List	HDXNOEX InChlKeys (14/02/2019)	Environmental standard set used to investigate hydrogen deuterium exchange in small molecule HRMS (Ruttkies et al. submitted). HDXEXCH list also contains observed deuterated species.
Neurotoxicants Collection from Public Resources	NEUROTOXINS XLSX, CSV (14/02/2019) CompTox NEUROTOXINS List	NEUROTOXINS InChlKeys (14/02/2019)	A list of neurotoxicants compiled from public resources, details on CompTox and Schymanski <i>et al.</i> (submitted).
Statins Collection from Public Resources	STATINS XLSX, CSV (14/02/2019) CompTox STATINS List	STATINS InChlKeys (14/02/2019)	A list of statins (lipid-lowering medications) compiled from public resources, details on CompTox.
Synthetic Cannabinoids and Psychoactive Compounds	SYNTHCANNAB XLSX, CSV (14/02/2019) CompTox SYNTHCANNAB List	SYNTHCANNAB InChlKeys (14/02/2019)	A list of synthetic cannabinoids and psychoactive compounds assembled from public resources, from CompTox.

Integration to MetFrag in place

https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0299-2

70

Conclusion

- Dashboard access to data for ~875,000 chemicals
- MS-Ready data facilitates structure identification
- Related metadata facilitates candidate ranking
- Relationship mappings and chemical lists of great utility
- Dashboard and contents are one part of the solution
- We are committed to open API development with time..

nvironmental Protection

Agency
Mass Spec Focused Applications

Journal of Exposure Science & Environmental Epidemiology (2018) 28:411–426 https://doi.org/10.1038/s41370-017-0012-y

REVIEW ARTICLE

Integrating tools for non-targeted analysis research and chemical safety evaluations at the US EPA

Jon R. Sobus¹ · John F. Wambaugh² · Kristin K. Isaacs¹ · Antony J. Williams² · Andrew D. McEachran³ · Ann M. Richard² · Christopher M. Grulke² · Elin M. Ulrich¹ · Julia E. Rager^{3,4} · Mark J. Strynar¹ · Seth R. Newton¹

Cite This: Environ. Sci. Technol. 2018, 52, 3125–3135

Article

mental Protection

pubs.acs.org/est

Suspect Screening Analysis of Chemicals in Consumer Products

Katherine A. Phillips,[†] Alice Yau,[‡] Kristin A. Favela,[‡] Kristin K. Isaacs,[†] Andrew McEachran,^{§,||} Christopher Grulke,^{||} Ann M. Richard,^{||} Antony J. Williams,^{||} Jon R. Sobus,[†] Russell S. Thomas,^{||} and John F. Wambaugh^{*,||}

- IT Development team especially Jeff
 Edwards and Jeremy Dunne
- Chris Grulke for the ChemReg system
- NERL colleagues Jon Sobus, Elin Ulrich, Mark Strynar, Seth Newton, Alex Chao
- Reza Aalizadeh & Nikolaos Thomaidis, Athens
- Emma Schymanski, LCSB, Luxembourg
- The NORMAN Network and all contributors

Antony Williams

US EPA Office of Research and Development National Center for Computational Toxicology EMAIL: <u>Williams.Antony@epa.gov</u> ORCID: https://orcid.org/0000-0002-2668-4821