
Software Citation Implementation

Daniel S. Katz, dskatz@illinois.edu, d.katz@ieee.org, @danielskatz
Assistant Director for Scientific Software & Applications, NCSA

Research Associate Professor, CS, ECE, iSchool

Daniel S. Katz, Martin Fenner, Neil Chue Hong
Working group co-chairs



Software in research

• Claim: software (including services) essential for 
the bulk of research

• Evidence from surveys
• UK academics at Russell Group Universities (2014)
• Members of (US) National Postdoctoral Research Association (2017)
• My research would not be possible without software: 67% / 63% 

(UK/US)
• My research would be possible but harder: 21% / 31%
• It would make no difference: 10% / 6%

S. Hettrick, “It's impossible to conduct research without software, say 7 out of 10 UK researchers,” Software 
Sustainaiblity Institute, 2014. Available at: https://www.software.ac.uk/blog/2016-09-12-its-impossible-conduct-
research-without-software-say-7-out-10-uk-researchers
S.J. Hettrick, M. Antonioletti, L. Carr, N. Chue Hong, S. Crouch, D. De Roure, et al, “UK Research Software Survey 
2014”, Zenodo, 2014. doi: 10.5281/zenodo.14809.
U. Nangia and D. S. Katz, “Track 1 Paper: Surveying the U.S. National Postdoctoral Association Regarding 
Software Use and Training in Research,” WSSSPE5.1, 2017. doi: 10.6084/m9.figshare.5328442.v1



Software in scholarship

• Claim: software (including services) 
essential for the bulk of research

• Evidence from journals:
• About half the papers in recent issues of Science 

were software-intensive projects
• In Nature Jan–Mar 2017, software mentioned in 32 

of 40 research articles
• Average of 6.5 software packages mentioned per article

U. Nangia and D. S. Katz, "Understanding Software in Research: Initial Results from Examining 
Nature and a Call for Collaboration," WSSSPE5.2, 2017. https://arxiv.org/abs/1706.06527



Software in research cycle

Create 
Hypothesis

Acquire 
Resources (e.g., 

Funding, 
Software, Data)

Perform 
Research (Build 

Software & 
Data)

Publish 
Results (e.g., 
Paper, Book, 

Software, Data)

Gain 
Recognition

Knowledge

Infrastructure
(share and cite)

Research



To better measure software contributions

• Citation system was created for papers/books

• We need to either/both
1. Jam software into current citation system
2. Rework citation system
• Focus on 1 as possible; 2 is very hard.

• Challenge: not just how to identify software in a paper
• How to identify software used within research process 



Software citation principles: people & process

• FORCE11 Software Citation group started July 2015

• WSSSPE3 Credit & Citation working group joined September 2015

• ~55 members (researchers, developers, publishers, repositories, librarians)

• Working on GitHub https://github.com/force11/force11-scwg & FORCE11 
https://www.force11.org/group/software-citation-working-group

• Reviewed existing community practices & developed use cases

• Drafted software citation principles document
• Started with data citation principles, updated based on software use cases and related work, 

updated based working group discussions, community feedback and review of draft, workshop 
at FORCE2016

• Discussion via GitHub issues, changes tracked

• Contents: 6 principles, discussion, use cases, …

• Submitted, reviewed and modified, published

• Smith AM, Katz DS, Niemeyer KE, FORCE11 Software Citation Working Group. (2016) 
Software Citation Principles. PeerJ Computer Science 2:e86. DOI: 10.7717/peerj-cs.86 and 
https://www.force11.org/software-citation-principles

• Also includes reviews and responses

https://github.com/force11/force11-scwg
https://www.force11.org/group/software-citation-working-group
http://dx.doi.org/10.7717/peerj-cs.86
https://www.force11.org/software-citation-principles


Principle 1. Importance
• Software should be considered a legitimate and 

citable product of research. Software citations 
should be accorded the same importance in the 
scholarly record as citations of other research 
products, such as publications and data; they should 
be included in the metadata of the citing work, for 
example in the reference list of a journal article, and 
should not be omitted or separated. Software should 
be cited on the same basis as any other research 
product such as a paper or a book, that is, authors 
should cite the appropriate set of software products 
just as they cite the appropriate set of papers. 



Principle 2. Credit and Attribution
• Software citations should facilitate giving scholarly

credit and normative, legal attribution to all 
contributors to the software, recognizing that a 
single style or mechanism of attribution may not be 
applicable to all software.

Principle 3. Unique Identification
• A software citation should include a method for 

identification that is machine actionable, globally 
unique, interoperable, and recognized by at least a 
community of the corresponding domain experts, and 
preferably by general public researchers. 



Principle 4. Persistence
• Unique identifiers and metadata describing the software and 

its disposition should persist – even beyond the lifespan of the 
software they describe. 

Principle 5. Accessibility
• Software citations should facilitate access to the software itself 

and to its associated metadata, documentation, data, and other 
materials necessary for both humans and machines to make 
informed use of the referenced software. 

Principle 6. Specificity
• Software citations should facilitate identification of, and access 

to, the specific version of software that was used. Software 
identification should be as specific as necessary, such as using 
version numbers, revision numbers, or variants such as platforms. 



Discussion Example: What to cite

• Importance principle: “…authors should cite the 
appropriate set of software products just as they cite 
the appropriate set of papers”

• What software to cite decided by author(s) of product, in 
context of community norms and practices

• POWL: “Do not cite standard office software (e.g. Word, 
Excel) or programming languages. Provide references 
only for specialized software.”

• i.e., if using different software could produce different 
data or results, then the software used should be cited

Purdue Online Writing Lab. Reference List: Electronic Sources (Web Publications). https://owl.english.purdue.edu/owl/resource/560/10/, 2015.



Example 1: Make your software citable

• Publish it – if it’s on GitHub, follow steps in 
https://guides.github.com/activities/citable-code/

• Otherwise, submit it to zenodo or figshare, with 
appropriate metadata (including authors, title, …, 
citations of … & software that you use)

• Get a DOI
• Create a CITATION file, update your README, tell 
people how to cite

• Also, can write a software paper and ask people to cite 
that (but this is secondary, just since our current system 
doesn’t work well)

https://guides.github.com/activities/citable-code/


Example 2: Cite someone else’s software

• Check for a CITATION file or README; if this says how 

to cite the software itself, do that

• If not, do your best following the principles

• Try to include all contributors to the software (maybe by just 

naming the project)

• Try to include a method for identification that is machine 

actionable, globally unique, interoperable – perhaps a URL to a 

release, a company product number

• If there’s a landing page that includes metadata, point to that, not 

directly to the software (e.g. the GitHub repo URL)

• Include specific version/release information

• If there’s a software paper, can cite this too, but not in 

place of citing the software



Working group status

•Principles document published in PeerJ
CS

•Software Citation Working Group ended
•Software Citation Implementation group 
now in progress
•Goal is implementing software citation
•Working with institutions, publishers, funders, 
researchers, etc.



Paper citation

•Three relevant steps for paper citation
1.Creator (aka author) submits paper and metadata to 
“publisher”

2.[review+], then publisher publishes paper & assigns 
identifier, often DOI

3.To refer to paper within another work, cite paper 
metadata, often including DOI

•Fixed order, discrete steps



Software citation

•For open source software today
• Creator develops software on GitHub, released at 
different stages (versions) during its development

• Someone who uses that software may not cite it;
if they do, they will cite the repository

• No step 2
• Partial step 3, because there is no clear metadata or 
identifier for the software that was used

•Software citation principles inserts step 2



Software citation vs paper citation

• Software citation principles guidance is of limited value
• Principles themselves still seem good
• But technically how to implement them is not clear
• Software citation principles guidance adds a step to the open source 

software developer’s workflow
• They may not care enough to implement it

• Real problem for open source:
• Steps (create, publish, cite) don’t match how open source is developed 

and used - software is more fine-grained and iterative
• Open source development mostly occurs in the open - no natural need 

for publish step, other than marketing and credit

• Also, we don’t address non-open source software sufficiently
• And social challenges around adoption are another step




