Skip to content
Branch: master
Go to file
Clone

Latest commit

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
src
 
 
 
 
 
 
 
 
 
 

README.adoc

Chronicle-Bytes

Maven Central

Chronicle-Bytes

Chronicle Bytes contains all the low level memory access wrappers. It is built on Chronicle Core’s direct memory and OS system call access.

Chronicle Bytes has a similar purpose to Java NIO’s ByteBuffer with some extensions.

The API supports.

  • 64-bit sizes

  • UTF-8 and ISO-8859-1 encoded strings.

  • thread safe off heap memory operations.

  • deterministic release of resources via reference counting.

  • compressed data types such as stop bit encoding.

  • elastic ByteBuffer wrappers which resize as required.

  • parsing text and writing text directly to off heap bytes.

Data types supported

operation

Indexed or streaming

binary

text

read/write binary primitives

both

float, double, boolean and unsigned/signed byte, short, 24-bit int, int, long, incompleteLong

double, int, long, char, double with precision

read/write text

both

8-bit/UTF-8 string with length or limit

8-bit/UTF-8 string

read/write other

streaming

histogram, named enum

bigdecimal, biginteger, date/time/zone, UUID, hexadecimal

data driven tests

from files

no

yes

CAS

indexed

int, long

volatile read/write

indexed

byte, short, int, long, float, double

peek

both

unsigned byte

stop bit compression

streaming

int,long, double, float, char

search

from start

indexOf string, findByte

addAndGet

indexed

float, double, int, long

copy

from start

write, copy

hash

from start

byteSum, fastHash

bytes marshallable

streaming

nested data structures, expected types only.

Data types explained

operation

explained

read/write binary primitives

to read an write primitive data stuctures stored in a binary from

read/write text

to read an write text data

read/write other

to read an write other data

data driven tests

https://en.wikipedia.org/wiki/Data-driven_testing

CAS

an atomic instruction used in multithreading to achieve synchronization. It compares the contents of a memory location with a given value and, only if they are the same, modifies the contents of that memory location to a new given value.

volatile read/write

http://tutorials.jenkov.com/java-concurrency/volatile.html

peek

peek is an operation which returns the value of the bytes without effecting its read position

stop bit compression

https://github.com/OpenHFT/RFC/tree/master/Stop-Bit-Encoding

search

is any algorithm which solves the search problem, namely, to retrieve information stored within some data structure

addAndGet

atomically adds the given value to the current value.

copy

to transfer data from one structure to another

hash

https://en.wikipedia.org/wiki/Hash_function

bytes marshallable

a serialization funciton

Creating Bytes

Bytes which wraps an on heap ByteBuffer
Bytes<ByteBuffer> bytes = Bytes.elasticHeapByteBuffer(64);
ByteBuffer bb = bytes.underlyingObject();
Bytes which wraps a direct ByteBuffer
Bytes<ByteBuffer> bytes = Bytes.elasticByteBuffer(64);
ByteBuffer bb = bytes.underlyingObject();
Bytes which wraps some native memory
Bytes bytes = Bytes.allocateElasticDirect(64);
long address = bytes.address
bytes.releaseLast(); // when it can be freed.
Bytes which will wrap some native memory when used
Bytes bytes = Bytes.allocateElasticDirect();
// use the bytes
bytes.releaseLast(); // when it can be freed.

Flipping Bytes

ByteBuffer needs to be flipped to switch between reading and writing.

Bytes holds a read position and a write position allowing you to write and immediately read without flipping.

Note
The writePosition is the readLimit.

Writing to a Hexadecimal dump

Writing to a hexadecimal dump is useful for documenting the format for messages written. We have used the hexadecimal dump here.

Writing primitives as binary and dumping
// only used for documentation
HexDumpBytes bytes = new HexDumpBytes();
bytes.comment("true").writeBoolean(true);
bytes.comment("s8").writeByte((byte) 1);
bytes.comment("u8").writeUnsignedByte(2);
bytes.comment("s16").writeShort((short) 3);
bytes.comment("u16").writeUnsignedShort(4);
bytes.comment("char").writeUnsignedShort('5'); // char
bytes.comment("s24").writeInt24(-6_666_666);
bytes.comment("u24").writeUnsignedInt24(16_666_666);
bytes.comment("s32").writeInt(6);
bytes.comment("u32").writeUnsignedShort(7);
bytes.comment("s64").writeLong(8);
bytes.comment("f32").writeFloat(9);
bytes.comment("f64").writeDouble(10);

System.out.println(bytes.toHexString());

prints

59                                              # true
01                                              # s8
02                                              # u8
03 00                                           # s16
04 00                                           # u16
35                                              # char
56 46 9a                                        # s24
2a 50 fe                                        # u24
06 00 00 00                                     # s32
07 00 00 00                                     # u32
08 00 00 00 00 00 00 00                         # s64
00 00 10 41                                     # f32
00 00 00 00 00 00 24 40                         # f64

to read this data you can use

Reading the primitive values above
boolean flag = bytes.readBoolean();
byte s8 = bytes.readByte();
int u8 = bytes.readUnsignedByte();
short s16 = bytes.readShort();
int u16 = bytes.readUnsignedShort();
char ch = bytes.readStopBitChar();
int s24 = bytes.readInt24();
long u24 = bytes.readUnsignedInt24();
int s32 = bytes.readInt();
long u32 = bytes.readUnsignedInt();
long s64 = bytes.readLong();
float f32 = bytes.readFloat();
double f64 = bytes.readDouble();

Writing and reading using offsets

Instead of streaming the data, sometimes you need to control the placement of data, possibly at random.

Write and read primitive by offset
Bytes<ByteBuffer> bytes = Bytes.elasticHeapByteBuffer(64);
bytes.writeBoolean(0, true);
bytes.writeByte(1, (byte) 1);
bytes.writeUnsignedByte(2, 2);
bytes.writeShort(3, (short) 3);
bytes.writeUnsignedShort(5, 4);
bytes.writeInt(7, 6);
bytes.writeUnsignedInt(11, 7);
bytes.writeLong(15, 8);
bytes.writeFloat(23, 9);
bytes.writeDouble(27, 10);
bytes.writePosition(35);

System.out.println(bytes.toHexString());

boolean flag = bytes.readBoolean(0);
byte s8 = bytes.readByte(1);
int u8 = bytes.readUnsignedByte(2);
short s16 = bytes.readShort(3);
int u16 = bytes.readUnsignedShort(5);
int s32 = bytes.readInt(7);
long u32 = bytes.readUnsignedInt(11);
long s64 = bytes.readLong(15);
float f32 = bytes.readFloat(23);
double f64 = bytes.readDouble(27);

prints

00000000 59 01 02 03 00 04 00 06  00 00 00 07 00 00 00 08 Y······· ········
00000010 00 00 00 00 00 00 00 00  00 10 41 00 00 00 00 00 ········ ··A·····
00000020 00 24 40                                         ·$@
Note
While HexDumpBytes supports the offset methods, you need to provide the offset in binary and the dump making it more complex to use.

Volatile read and ordered write

Chronicle Bytes supports variants of the write primitives which have a store barrier writeOrderedXxxx, and reads with a load barrier readVolatileXxxx

Note
write ordered doesn’t stall the pipeline to wait for the write to occur, making it possible for a single thread to read an old value after the ordered write.

Working wth text

You can also write and read text to Bytes for low level, direct to native memory text processing.

Writing primitives as text
Bytes<ByteBuffer> bytes = Bytes.elasticHeapByteBuffer(64);
bytes.append(true).append('\n');
bytes.append(1).append('\n');
bytes.append(2L).append('\n');
bytes.append('3').append('\n');
bytes.append(4.1f).append('\n');
bytes.append(5.2).append('\n');
bytes.append(6.2999999, 3).append('\n');

System.out.println(bytes.toHexString());

prints

00000000 54 0a 31 0a 32 0a 33 0a  34 2e 31 0a 35 2e 32 0a T·1·2·3· 4.1·5.2·
00000010 36 2e 33 30 30 0a                                6.300·
Reading primitives as text
boolean flag = bytes.parseBoolean();
int s32 = bytes.parseInt();
long s64 = bytes.parseLong();
String ch = bytes.parseUtf8(StopCharTesters.SPACE_STOP);
float f32 = bytes.parseFloat();
double f64 = bytes.parseDouble();
double f64b = bytes.parseDouble();
Note
There are less methods for text as 8, 16 and 24 bit can use methods for int, Unsigned int can use the long method.

Reading and Writing Strings

Chronicle Bytes supports two encodings, ISO-8859-1 and UTF-8. It also supports writing these as binary with a length prefix, and a string which should be terminated. Bytes expects Strings to be read to a buffer for further processing, possibly with a String pool.

HexDumpBytes bytes = new HexDumpBytes();
bytes.comment("write8bit").write8bit("£ 1");
bytes.comment("writeUtf8").writeUtf8("£ 1");
bytes.comment("append8bit").append8bit("£ 1").append('\n');
bytes.comment("appendUtf8").appendUtf8("£ 1").append('\n');

System.out.println(bytes.toHexString());

prints

03 a3 20 31                                     # write8bit
04 c2 a3 20 31                                  # writeUtf8
a3 20 31 0a                                     # append8bit
c2 a3 20 31 0a                                  # appendUtf8
String a = bytes.read8bit();
String b = bytes.readUtf8();
String c = bytes.parse8bit(StopCharTesters.CONTROL_STOP);
String d = bytes.parseUtf8(StopCharTesters.CONTROL_STOP);

Binary strings are prefixed with a Stop Bit Encoded length.

HexDumpBytes bytes = new HexDumpBytes();
bytes.comment("write8bit").write8bit((String) null);
bytes.comment("writeUtf8").writeUtf8(null);

System.out.println(bytes.toHexString());

String a = bytes.read8bit();
String b = bytes.readUtf8();
assertEquals(null, a);
assertEquals(null, b);

prints

80 00                                           # write8bit
80 00                                           # writeUtf8
Note
80 00 is the stop bit encoding for -1 or ~0

Compare and Set operation

In binary, you can atomically replace an int or long on condition that it is an expected value.

Write two fields, remember where the int and long are
HexDumpBytes bytes = new HexDumpBytes();

bytes.comment("s32").writeUtf8("s32");
long s32 = bytes.writePosition();
bytes.writeInt(0);

bytes.comment("s64").writeUtf8("s64");
long s64 = bytes.writePosition();
bytes.writeLong(0);

System.out.println(bytes.toHexString());

prints

03 73 33 32 00 00 00 00                         # s32
03 73 36 34 00 00 00 00 00 00 00 00             # s64
CAS two fields
assertTrue(bytes.compareAndSwapInt(s32, 0, Integer.MAX_VALUE));
assertTrue(bytes.compareAndSwapLong(s64, 0, Long.MAX_VALUE));

System.out.println(bytes.toHexString());

prints

03 73 33 32 ff ff ff 7f                         # s32
03 73 36 34 ff ff ff ff ff ff ff 7f             # s64

INFO: You might wonder, how is the hex dump updated as well as the binary? The readPosition actually holds the write position for both, which is why it has to be computed in this case.

Stop bit compression

Stop Bit encoding is one form of simple compression. For each 7 bits set, a byte is used with the high bit set when there is another byte to write.

See Stop Bit Encoding RFC for more details

Writing with stop bit encoding
HexDumpBytes bytes = new HexDumpBytes();

for (long i : new long[]{
        0, -1,
        127, -127,
        128, -128,
        1 << 14, 1 << 21,
        1 << 28, 1L << 35,
        1L << 42, 1L << 49,
        1L << 56, Long.MAX_VALUE,
        Long.MIN_VALUE}) {
    bytes.comment(i + "L").writeStopBit(i);
}

for (double d : new double[]{
        0.0,
        -0.0,
        1.0,
        1.0625,
        -128,
        -Double.MIN_NORMAL,
        Double.NEGATIVE_INFINITY,
        Double.NaN,
        Double.POSITIVE_INFINITY}) {
    bytes.comment(d + "").writeStopBit(d);
}

System.out.println(bytes.toHexString());

prints

00                                              # 0L
80 00                                           # -1L
7f                                              # 127L
fe 00                                           # -127L
80 01                                           # 128L
ff 00                                           # -128L
80 80 01                                        # 16384L
80 80 80 01                                     # 2097152L
80 80 80 80 01                                  # 268435456L
80 80 80 80 80 01                               # 34359738368L
80 80 80 80 80 80 01                            # 4398046511104L
80 80 80 80 80 80 80 01                         # 562949953421312L
80 80 80 80 80 80 80 80 01                      # 72057594037927936L
ff ff ff ff ff ff ff ff 7f                      # 9223372036854775807L
ff ff ff ff ff ff ff ff ff 00                   # -9223372036854775808L
00                                              # 0.0
40                                              # -0.0
9f 7c                                           # 1.0
9f fc 20                                        # 1.0625
e0 18                                           # -128.0
c0 04                                           # -2.2250738585072014E-308
ff 7c                                           # -Infinity
bf 7e                                           # NaN
bf 7c                                           # Infinity

To read these you need either long x = bytes.readStopBit() or double d = bytes.readStopBitDouble()

BytesMarshallable objects

Chronicle Bytes supports serializing simple objects where the type is not stored. This is similar to`RawWire` in Chronicle Wire.

@NotNull MyByteable mb1 = new MyByteable(false, (byte) 1, (short) 2, '3', 4, 5.5f, 6, 7.7);
@NotNull MyByteable mb2 = new MyByteable(true, (byte) 11, (short) 22, 'T', 44, 5.555f, 66, 77.77);
ZonedDateTime zdt1 = ZonedDateTime.parse("2017-11-06T12:35:56.775Z[Europe/London]");
ZonedDateTime zdt2 = ZonedDateTime.parse("2016-10-05T01:34:56.775Z[Europe/London]");
UUID uuid1 = new UUID(0x123456789L, 0xABCDEF);
UUID uuid2 = new UUID(0x1111111111111111L, 0x2222222222222222L);
@NotNull MyScalars ms1 = new MyScalars("Hello", BigInteger.ONE, BigDecimal.TEN, zdt1.toLocalDate(), zdt1.toLocalTime(), zdt1.toLocalDateTime(), zdt1, uuid1);
@NotNull MyScalars ms2 = new MyScalars("World", BigInteger.ZERO, BigDecimal.ZERO, zdt2.toLocalDate(), zdt2.toLocalTime(), zdt2.toLocalDateTime(), zdt2, uuid2);
@NotNull MyNested mn1 = new MyNested(mb1, ms1);
@NotNull MyNested mn2 = new MyNested(mb2, ms2);
bytes.comment("mn1").writeUnsignedByte(1);
mn1.writeMarshallable(bytes);
bytes.comment("mn2").writeUnsignedByte(2);
mn2.writeMarshallable(bytes);
MyByteable data structure
class MyByteable implements BytesMarshallable {
    boolean flag;
    byte b;
    short s;
    char c;
    int i;
    float f;
    long l;
    double d;

    public MyByteable(boolean flag, byte b, short s, char c, int i, float f, long l, double d) {
        this.flag = flag;
        this.b = b;
        this.s = s;
        this.c = c;
        this.i = i;
        this.f = f;
        this.l = l;
        this.d = d;
    }
MyScalars data structure
class MyScalars implements BytesMarshallable {
    String s;
    BigInteger bi;
    BigDecimal bd;
    LocalDate date;
    LocalTime time;
    LocalDateTime dateTime;
    ZonedDateTime zonedDateTime;
    UUID uuid;

    public MyScalars(String s, BigInteger bi, BigDecimal bd, LocalDate date, LocalTime time, LocalDateTime dateTime, ZonedDateTime zonedDateTime, UUID uuid) {
        this.s = s;
        this.bi = bi;
        this.bd = bd;
        this.date = date;
        this.time = time;
        this.dateTime = dateTime;
        this.zonedDateTime = zonedDateTime;
        this.uuid = uuid;
    }

prints

01                                              # mn1
                                                # byteable
      4e                                              # flag
      01                                              # b
      02 00                                           # s
      33                                              # c
      04 00 00 00                                     # i
      00 00 b0 40                                     # f
      06 00 00 00 00 00 00 00                         # l
      cd cc cc cc cc cc 1e 40                         # d
                                                # scalars
      05 48 65 6c 6c 6f                               # s
      01 31                                           # bi
      02 31 30                                        # bd
      0a 32 30 31 37 2d 31 31 2d 30 36                # date
      0c 31 32 3a 33 35 3a 35 36 2e 37 37 35          # time
      17 32 30 31 37 2d 31 31 2d 30 36 54 31 32 3a 33 # dateTime
      35 3a 35 36 2e 37 37 35 27 32 30 31 37 2d 31 31 # zonedDateTime
      2d 30 36 54 31 32 3a 33 35 3a 35 36 2e 37 37 35
      5a 5b 45 75 72 6f 70 65 2f 4c 6f 6e 64 6f 6e 5d # uuid
      24 30 30 30 30 30 30 30 31 2d 32 33 34 35 2d 36
      37 38 39 2d 30 30 30 30 2d 30 30 30 30 30 30 61
      62 63 64 65 66
02                                              # mn2
                                                # byteable
      59                                              # flag
      0b                                              # b
      16 00                                           # s
      54                                              # c
      2c 00 00 00                                     # i
      8f c2 b1 40                                     # f
      42 00 00 00 00 00 00 00                         # l
      e1 7a 14 ae 47 71 53 40                         # d
                                                # scalars
      05 57 6f 72 6c 64                               # s
      01 30                                           # bi
      01 30                                           # bd
      0a 32 30 31 36 2d 31 30 2d 30 35                # date
      0c 30 31 3a 33 34 3a 35 36 2e 37 37 35          # time
      17 32 30 31 36 2d 31 30 2d 30 35 54 30 31 3a 33 # dateTime
      34 3a 35 36 2e 37 37 35 2c 32 30 31 36 2d 31 30 # zonedDateTime
      2d 30 35 54 30 31 3a 33 34 3a 35 36 2e 37 37 35
      2b 30 31 3a 30 30 5b 45 75 72 6f 70 65 2f 4c 6f
      6e 64 6f 6e 5d 24 31 31 31 31 31 31 31 31 2d 31 # uuid
      31 31 31 2d 31 31 31 31 2d 32 32 32 32 2d 32 32
      32 32 32 32 32 32 32 32 32 32

Data driven tests

The purpose of a Lambda function is to create a simple, highly reproducible, easily testable component.

Once you have your data dumped as hexadecimal, you can create tests using that data, and make variations of those tests.

What do we mean by a Lambda function?

In this context a Lambda function is one which is entirely input driven and produces a list of messages (one or more outputs).

The simplest Lambda function is stateless, however this has limited application. They are useful for message translation.

If you need a stateful Lambda function, you can consider the input to the function to be every message it has ever consumed. Obviously this is inefficient, however with appropriate caches in your lamdba function, you can process and produce result incrementally.

Data in and out.

We module a Lambda function as having an interface for inputs and another for outputs. These interfaces can be the same.

Sample interface for Lambda function
interface IBytesMethod {
    @MethodId(0x81L) // (1)
    void myByteable(MyByteable byteable);

    @MethodId(0x82L)
    void myScalars(MyScalars scalars);

    @MethodId(0x83L)
    void myNested(MyNested nested);
}
  1. assign a unique id to each method to simplify decoding/encoding.

Each method needs a DTO to describe the data for that message.

class MyByteable implements BytesMarshallable {
    boolean flag;
    byte b;
    short s;
    char c;
    int i;
    float f;
    long l;
    double d;
....
class MyScalars implements BytesMarshallable {
    String s;
    BigInteger bi;
    BigDecimal bd;
    LocalDate date;
    LocalTime time;
    LocalDateTime dateTime;
    ZonedDateTime zonedDateTime;
    UUID uuid;
....
class MyNested implements BytesMarshallable {
    MyByteable byteable;
    MyScalars scalars;
....

The implementation needs to take it’s output interface and implement the input interface

A simple pass through implementation
static class IBMImpl implements IBytesMethod {
    final IBytesMethod out;

    IBMImpl(IBytesMethod out) { this.out = out; }

    @Override
    public void myByteable(MyByteable byteable) { out.myByteable(byteable); }

    @Override
    public void myScalars(MyScalars scalars) { out.myScalars(scalars); }

    @Override
    public void myNested(MyNested nested) { out.myNested(nested); }
}

Once we have interfaces, DTOs, and an implementation we can setup a test harness

Setup a test harness for a Lambda function
protected void btmttTest(String input, String output) throws IOException {
    BytesTextMethodTester tester = new BytesTextMethodTester<>(
            input,
            IBMImpl::new,
            IBytesMethod.class,
            output);
    tester.run();
    assertEquals(tester.expected(), tester.actual());
}

This allows us to give two files, one for expected inputs and one for expected outputs.

@Test
public void run() throws IOException {
    btmttTest("btmtt/prim-input.txt", "btmtt/prim-output.txt");
}
Note
In this case the input and outputs are expected to be the same.
Sample input/output file
81 01                                           # myByteable
   4e                                              # flag
   01                                              # b
   02 00                                           # s
   33                                              # c
   04 00 00 00                                     # i
   00 00 b0 40                                     # f
   06 00 00 00 00 00 00 00                         # l
   cd cc cc cc cc cc 1e 40                         # d
### End Of Block
81 01                                           # myByteable
   59                                              # flag
   0b                                              # b
   16 00                                           # s
   54                                              # c
   2c 00 00 00                                     # i
   8f c2 b1 40                                     # f
   42 00 00 00 00 00 00 00                         # l
   e1 7a 14 ae 47 71 53 40                         # d
### End Of Block
82 01                                           # myScalars
   05 48 65 6c 6c 6f                               # s
   01 31                                           # bi
   02 31 30                                        # bd
   0a 32 30 31 37 2d 31 31 2d 30 36                # date
   0c 31 32 3a 33 35 3a 35 36 2e 37 37 35          # time
   17 32 30 31 37 2d 31 31 2d 30 36 54 31 32 3a 33 # dateTime
   35 3a 35 36 2e 37 37 35 27 32 30 31 37 2d 31 31 # zonedDateTime
   2d 30 36 54 31 32 3a 33 35 3a 35 36 2e 37 37 35
   5a 5b 45 75 72 6f 70 65 2f 4c 6f 6e 64 6f 6e 5d # uuid
   24 30 30 30 30 30 30 30 31 2d 32 33 34 35 2d 36
   37 38 39 2d 30 30 30 30 2d 30 30 30 30 30 30 61
   62 63 64 65 66
### End Of Block
83 01                                           # myNested
                                                # byteable
      59                                              # flag
      0b                                              # b
      16 00                                           # s
      54                                              # c
      2c 00 00 00                                     # i
      8f c2 b1 40                                     # f
      42 00 00 00 00 00 00 00                         # l
      e1 7a 14 ae 47 71 53 40                         # d
                                                # scalars
      05 57 6f 72 6c 64                               # s
      01 30                                           # bi
      01 30                                           # bd
      0a 32 30 31 36 2d 31 30 2d 30 35                # date
      0c 30 31 3a 33 34 3a 35 36 2e 37 37 35          # time
      17 32 30 31 36 2d 31 30 2d 30 35 54 30 31 3a 33 # dateTime
      34 3a 35 36 2e 37 37 35 2c 32 30 31 36 2d 31 30 # zonedDateTime
      2d 30 35 54 30 31 3a 33 34 3a 35 36 2e 37 37 35
      2b 30 31 3a 30 30 5b 45 75 72 6f 70 65 2f 4c 6f
      6e 64 6f 6e 5d 24 31 31 31 31 31 31 31 31 2d 31 # uuid
      31 31 31 2d 31 31 31 31 2d 32 32 32 32 2d 32 32
      32 32 32 32 32 32 32 32 32 32
### End Of Block
### End Of Test

In this case, the test calls the methods with the matching method ids which in turn uses the same ids to encode the output.

Note
Creating and maintain such tests can be an overhead you don’t need. In this case, you can use Chronicle Wire’s YAML testing format to check functionality. WIre can be used for most of the tests even if you intend to use Bytes for production.

Comparison of access to native memory

Access ByteBuffer Netty IOBuffer Aeron UnsafeBuffer Chronicle Bytes

Read/write primitives in native memory

yes

yes

yes

yes

Separate Mutable interfaces

run time check

run time check

yes

yes

Read/Write UTF8 strings

no

no

String

any CharSequence + Appendable

Read/Write ISO-8859-1 strings

no

no

?

any CharSequence + Appendable

Support Endianness

Big and Little

Big and Little

Big and Little

Native only

Size of buffer

31-bit

31-bit

31-bit

63-bit

Elastic ByteBuffers

no

yes

no

yes

Disable bounds checks

no

no

set globally

by buffer

Wrap an address

no

no

yes

yes

Thread safe read/write, CAS and atomic add operations

no

no

int; long

int; long; float and double

Streaming access

yes

yes

no

yes

Deterministic release of memory

Internal API

Internal API

Caller’s responsibility

yes

Separate read and write position

no

yes

na

yes

View Chronicle-Bytes in the debugger

When using intellij idea, you can set up a custom renderer to view the bytes, see the images below :

customize data views menu
customize data views

About

Chronicle Bytes has a similar purpose to Java NIO's ByteBuffer with many extensions

Resources

License

Languages

You can’t perform that action at this time.