New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add variances of predictions? #17

Open
leeper opened this Issue May 3, 2017 · 9 comments

Comments

Projects
None yet
2 participants
@leeper
Copy link
Owner

leeper commented May 3, 2017

Now that prediction() has gained the at argument, it seems logical to report variances (ala Stata margins::margins()).

@leeper leeper added the question label May 3, 2017

@leeper

This comment has been minimized.

Copy link
Owner

leeper commented Jul 11, 2017

Relevant example (from email), in Stata:

* Low Birth Weight 
webuse lbw

* The logistic regression
logit low i.smoke i.race age lwt i.smoke ptl ht ui

* The margins proportions among smoke levels
* Note. There is no dy/dx because I want the margina mean (proportion)
margins smoke, post

* Now we use the proportions to compute the ratios
nlcom _b[1.smoke]/_b[0.smoke]

* Store the log-ratio
nlcom (logpr: ln(_b[1.smoke]) - ln(_b[0.smoke])), post

* Use lincom to get back to ratio world
lincom logpr, eform

R equivalent:

library("prediction")
library("webuse")
webuse("lbw")

m <- glm(low ~ smoke + race + age + lwt + smoke + ptl + ht + ui, data = lbw, family = binomial)
summary(m)

# marginal proportions
prediction(m, at = list(smoke = 0:1))

but need the variances to do an R equivalent of nlcom.

@randomgambit

This comment has been minimized.

Copy link

randomgambit commented Aug 11, 2017

@leeper looking forward to this! would be amazing!!

@leeper leeper added enhancement and removed question labels Jan 25, 2018

@leeper leeper referenced this issue Feb 8, 2018

Open

Bug in cplot #64

@leeper

This comment has been minimized.

Copy link
Owner

leeper commented Mar 5, 2018

Here's a simple Stata example:

. regress y i.sex age distance
. margins sex
Predictive margins                              Number of obs     =      3,000
Model VCE    : OLS

Expression   : Linear prediction, predict()

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         sex |
       male  |   62.73048   .5354111   117.16   0.000     61.68067    63.78029
     female  |   76.71801   .5346591   143.49   0.000     75.66967    77.76634
------------------------------------------------------------------------------

and the equivalent R code we'll need to generalize:

webuse::webuse("margex")
# setup data
Y <- cbind(1, margex[, c("sex", "age", "distance", "y")])
Y$sex <- as.numeric(Y$sex)
Y$age <- as.numeric(Y$age)
Y$distance <- as.numeric(Y$distance)
Y$y <- as.numeric(Y$y)

# estimate model
m <- lm(y ~ factor(sex) + age + distance, data = Y)

# convert data to matrix
Y$y <- NULL
Ymat <- t(matrix(colMeans(Y)))

## standard error of predictive marginal mean (non-sense given sex is factor)
sqrt(diag(Ymat %*% vcov(m) %*% t(Ymat)))

# predictive margin for men
Ymale <- Ymat
Ymale[,2] <- 0
as.vector(Ymale %*% coef(m))
## [1] 62.73048
sqrt(diag(Ymale %*% vcov(m) %*% t(Ymale)))
## [1] 0.5354111

# predictive margin for women
Yfemale <- Ymat
Yfemale[,2] <- 1
as.vector(Yfemale %*% coef(m))
## [1] 76.71801
sqrt(diag(Yfemale %*% vcov(m) %*% t(Yfemale)))
## [1] 0.5346591
@leeper

This comment has been minimized.

Copy link
Owner

leeper commented Mar 5, 2018

We can actually obtain this easier than I expected because it's the same as:

> predict(m, setNames(data.frame(Ymale), c("intercept", "sex", "age", "distance")), se.fit = TRUE)
$fit
       1 
62.73048 

$se.fit
[1] 0.5354111

$df
[1] 2996

$residual.scale
[1] 20.15342

> predict(m, setNames(data.frame(Yfemale), c("intercept", "sex", "age", "distance")), se.fit = TRUE)
$fit
       1 
76.71801 

$se.fit
[1] 0.5346591

$df
[1] 2996

$residual.scale
[1] 20.15342

Thus:

> Ymale_df <- Y
> Ymale_df$sex <- 0
> mean(predict(m, Ymale_df))
[1] 62.73048
> Yfemale_df <- Y
> Yfemale_df$sex <- 1
> mean(predict(m, Yfemale_df))
[1] 76.71801

leeper added a commit that referenced this issue Aug 3, 2018

@leeper

This comment has been minimized.

Copy link
Owner

leeper commented Aug 3, 2018

Need to match output of margins:

> summary(margins::margins(mod))
 factor     AME     SE       z      p   lower   upper
 group2  8.9454 0.9710  9.2129 0.0000  7.0423 10.8485
 group3 18.5723 1.5032 12.3552 0.0000 15.6261 21.5185
   sex1 18.4317 0.9599 19.2011 0.0000 16.5503 20.3132

So add columns:

  • test statistic
  • p-value
  • lower
  • upper
@leeper

This comment has been minimized.

Copy link
Owner

leeper commented Aug 3, 2018

This is now working for lm():

> summary(prediction(lm(mpg ~ cyl*am, mtcars), at = list(cyl = 4:8, am = 0:1)))
 at(cyl) at(am) Prediction     SE      z          p lower upper
       4      0      22.97 1.4840 15.478  4.854e-54 20.06 25.88
       5      0      20.99 1.1035 19.026  1.037e-80 18.83 23.16
       6      0      19.02 0.7971 23.862 7.665e-126 17.46 20.58
       7      0      17.04 0.6748 25.258 9.138e-141 15.72 18.37
       8      0      15.07 0.8232 18.304  7.718e-75 13.45 16.68
       4      1      27.93 1.0055 27.772 9.410e-170 25.95 29.90
       5      1      24.64 0.8163 30.190 3.234e-200 23.04 26.24
       6      1      21.36 0.9587 22.284 5.340e-110 19.48 23.24
       7      1      18.08 1.3302 13.594  4.324e-42 15.48 20.69
       8      1      14.80 1.7936  8.253  1.549e-16 11.29 18.32

But support for other model types will require some further work.

@leeper

This comment has been minimized.

Copy link
Owner

leeper commented Aug 4, 2018

Stata Benchmarks:

. webuse margex
(Artificial data for margins)

. logit outcome i.sex i.group

Iteration 0:   log likelihood = -1366.0718  
Iteration 1:   log likelihood = -1207.4432  
Iteration 2:   log likelihood = -1186.5543  
Iteration 3:   log likelihood = -1185.6072  
Iteration 4:   log likelihood = -1185.6063  
Iteration 5:   log likelihood = -1185.6063  

Logistic regression                             Number of obs     =      3,000
                                                LR chi2(3)        =     360.93
                                                Prob > chi2       =     0.0000
Log likelihood = -1185.6063                     Pseudo R2         =     0.1321

------------------------------------------------------------------------------
     outcome |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
         sex |
     female  |   .5074091   .1289294     3.94   0.000     .2547122     .760106
             |
       group |
          2  |  -1.196351   .1251234    -9.56   0.000    -1.441589   -.9511138
          3  |  -2.591768   .2759998    -9.39   0.000    -3.132718   -2.050819
             |
       _cons |  -1.199567   .1262273    -9.50   0.000    -1.446968   -.9521664
------------------------------------------------------------------------------

. margins

Predictive margins                              Number of obs     =      3,000
Model VCE    : OIM

Expression   : Pr(outcome), predict()

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       _cons |   .1696667   .0064564    26.28   0.000     .1570124    .1823209
------------------------------------------------------------------------------

. 
. margins, predict(xb)

Predictive margins                              Number of obs     =      3,000
Model VCE    : OIM

Expression   : Linear prediction (log odds), predict(xb)

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       _cons |  -1.981424   .0731871   -27.07   0.000    -2.124868    -1.83798
------------------------------------------------------------------------------

. 
@leeper

This comment has been minimized.

Copy link
Owner

leeper commented Aug 4, 2018

@leeper

This comment has been minimized.

Copy link
Owner

leeper commented Aug 5, 2018

Further Stata benchmarks:

. quietly logit outcome distance

. margins

Predictive margins                              Number of obs     =      3,000
Model VCE    : OIM

Expression   : Pr(outcome), predict()

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       _cons |   .1696667   .0068061    24.93   0.000      .156327    .1830063
------------------------------------------------------------------------------

. margins, predict(xb)

Predictive margins                              Number of obs     =      3,000
Model VCE    : OIM

Expression   : Linear prediction (log odds), predict(xb)

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       _cons |  -1.706939   .0625907   -27.27   0.000    -1.829614   -1.584263
------------------------------------------------------------------------------

. help margins

. margins, atmeans

Adjusted predictions                            Number of obs     =      3,000
Model VCE    : OIM

Expression   : Pr(outcome), predict()
at           : distance        =    58.58566 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       _cons |   .1535612   .0081355    18.88   0.000     .1376158    .1695066
------------------------------------------------------------------------------

. margins, predict(xb) atmeans

Adjusted predictions                            Number of obs     =      3,000
Model VCE    : OIM

Expression   : Linear prediction (log odds), predict(xb)
at           : distance        =    58.58566 (mean)

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
       _cons |  -1.706939   .0625907   -27.27   0.000    -1.829614   -1.584263
------------------------------------------------------------------------------

leeper added a commit that referenced this issue Aug 5, 2018

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment