Skip to content
Please note that GitHub no longer supports your web browser.

We recommend upgrading to the latest Google Chrome or Firefox.

Learn more
Permalink
Browse files

Chinese Remainder Theorem | Diophantine Equation | Modular Division (#…

…1248)

* Update .gitignore to remove __pycache__/

* added chinese_remainder_theorem

* Added Diophantine_equation algorithm

* Update Diophantine eqn & chinese remainder theorem

* Update Diophantine eqn & chinese remainder theorem

* added efficient modular division algorithm

* added GCD function

* update chinese_remainder_theorem | dipohantine eqn | modular_division

* update chinese_remainder_theorem | dipohantine eqn | modular_division

* added a new directory named blockchain & a files from data_structures/hashing/number_theory

* added a new directory named blockchain & a files from data_structures/hashing/number_theory
  • Loading branch information...
OddExtension5 authored and cclauss committed Oct 6, 2019
1 parent b1a769c commit 9cc9f67d646d427eb6b8296767aea50dd139969f
Showing with 364 additions and 0 deletions.
  1. +91 −0 blockchain/chinese_remainder_theorem.py
  2. +124 −0 blockchain/diophantine_equation.py
  3. +149 −0 blockchain/modular_division.py
@@ -0,0 +1,91 @@
# Chinese Remainder Theorem:
# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )

# If GCD(a,b) = 1, then for any remainder ra modulo a and any remainder rb modulo b there exists integer n,
# such that n = ra (mod a) and n = ra(mod b). If n1 and n2 are two such integers, then n1=n2(mod ab)

# Algorithm :

# 1. Use extended euclid algorithm to find x,y such that a*x + b*y = 1
# 2. Take n = ra*by + rb*ax


# Extended Euclid
def extended_euclid(a, b):
"""
>>> extended_euclid(10, 6)
(-1, 2)
>>> extended_euclid(7, 5)
(-2, 3)
"""
if b == 0:
return (1, 0)
(x, y) = extended_euclid(b, a % b)
k = a // b
return (y, x - k * y)


# Uses ExtendedEuclid to find inverses
def chinese_remainder_theorem(n1, r1, n2, r2):
"""
>>> chinese_remainder_theorem(5,1,7,3)
31
Explanation : 31 is the smallest number such that
(i) When we divide it by 5, we get remainder 1
(ii) When we divide it by 7, we get remainder 3
>>> chinese_remainder_theorem(6,1,4,3)
14
"""
(x, y) = extended_euclid(n1, n2)
m = n1 * n2
n = r2 * x * n1 + r1 * y * n2
return ((n % m + m) % m)


# ----------SAME SOLUTION USING InvertModulo instead ExtendedEuclid----------------

# This function find the inverses of a i.e., a^(-1)
def invert_modulo(a, n):
"""
>>> invert_modulo(2, 5)
3
>>> invert_modulo(8,7)
1
"""
(b, x) = extended_euclid(a, n)
if b < 0:
b = (b % n + n) % n
return b


# Same a above using InvertingModulo
def chinese_remainder_theorem2(n1, r1, n2, r2):
"""
>>> chinese_remainder_theorem2(5,1,7,3)
31
>>> chinese_remainder_theorem2(6,1,4,3)
14
"""
x, y = invert_modulo(n1, n2), invert_modulo(n2, n1)
m = n1 * n2
n = r2 * x * n1 + r1 * y * n2
return (n % m + m) % m


# import testmod for testing our function
from doctest import testmod

if __name__ == '__main__':
testmod(name='chinese_remainder_theorem', verbose=True)
testmod(name='chinese_remainder_theorem2', verbose=True)
testmod(name='invert_modulo', verbose=True)
testmod(name='extended_euclid', verbose=True)
@@ -0,0 +1,124 @@
# Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the diophantine equation
# a*x + b*y = c has a solution (where x and y are integers) iff gcd(a,b) divides c.

# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )


def diophantine(a, b, c):
"""
>>> diophantine(10,6,14)
(-7.0, 14.0)
>>> diophantine(391,299,-69)
(9.0, -12.0)
But above equation has one more solution i.e., x = -4, y = 5.
That's why we need diophantine all solution function.
"""

assert c % greatest_common_divisor(a, b) == 0 # greatest_common_divisor(a,b) function implemented below
(d, x, y) = extended_gcd(a, b) # extended_gcd(a,b) function implemented below
r = c / d
return (r * x, r * y)


# Lemma : if n|ab and gcd(a,n) = 1, then n|b.

# Finding All solutions of Diophantine Equations:

# Theorem : Let gcd(a,b) = d, a = d*p, b = d*q. If (x0,y0) is a solution of Diophantine Equation a*x + b*y = c.
# a*x0 + b*y0 = c, then all the solutions have the form a(x0 + t*q) + b(y0 - t*p) = c, where t is an arbitrary integer.

# n is the number of solution you want, n = 2 by default

def diophantine_all_soln(a, b, c, n=2):
"""
>>> diophantine_all_soln(10, 6, 14)
-7.0 14.0
-4.0 9.0
>>> diophantine_all_soln(10, 6, 14, 4)
-7.0 14.0
-4.0 9.0
-1.0 4.0
2.0 -1.0
>>> diophantine_all_soln(391, 299, -69, n = 4)
9.0 -12.0
22.0 -29.0
35.0 -46.0
48.0 -63.0
"""
(x0, y0) = diophantine(a, b, c) # Initial value
d = greatest_common_divisor(a, b)
p = a // d
q = b // d

for i in range(n):
x = x0 + i * q
y = y0 - i * p
print(x, y)


# Euclid's Lemma : d divides a and b, if and only if d divides a-b and b

# Euclid's Algorithm

def greatest_common_divisor(a, b):
"""
>>> greatest_common_divisor(7,5)
1
Note : In number theory, two integers a and b are said to be relatively prime, mutually prime, or co-prime
if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1.
>>> greatest_common_divisor(121, 11)
11
"""
if a < b:
a, b = b, a

while a % b != 0:
a, b = b, a % b

return b


# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b)


def extended_gcd(a, b):
"""
>>> extended_gcd(10, 6)
(2, -1, 2)
>>> extended_gcd(7, 5)
(1, -2, 3)
"""
assert a >= 0 and b >= 0

if b == 0:
d, x, y = a, 1, 0
else:
(d, p, q) = extended_gcd(b, a % b)
x = q
y = p - q * (a // b)

assert a % d == 0 and b % d == 0
assert d == a * x + b * y

return (d, x, y)


# import testmod for testing our function
from doctest import testmod

if __name__ == '__main__':
testmod(name='diophantine', verbose=True)
testmod(name='diophantine_all_soln', verbose=True)
testmod(name='extended_gcd', verbose=True)
testmod(name='greatest_common_divisor', verbose=True)
@@ -0,0 +1,149 @@
# Modular Division :
# An efficient algorithm for dividing b by a modulo n.

# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )

# Given three integers a, b, and n, such that gcd(a,n)=1 and n>1, the algorithm should return an integer x such that
# 0≤x≤n−1, and b/a=x(modn) (that is, b=ax(modn)).

# Theorem:
# a has a multiplicative inverse modulo n iff gcd(a,n) = 1


# This find x = b*a^(-1) mod n
# Uses ExtendedEuclid to find the inverse of a


def modular_division(a, b, n):
"""
>>> modular_division(4,8,5)
2
>>> modular_division(3,8,5)
1
>>> modular_division(4, 11, 5)
4
"""
assert n > 1 and a > 0 and greatest_common_divisor(a, n) == 1
(d, t, s) = extended_gcd(n, a) # Implemented below
x = (b * s) % n
return x


# This function find the inverses of a i.e., a^(-1)
def invert_modulo(a, n):
"""
>>> invert_modulo(2, 5)
3
>>> invert_modulo(8,7)
1
"""
(b, x) = extended_euclid(a, n) # Implemented below
if b < 0:
b = (b % n + n) % n
return b


# ------------------ Finding Modular division using invert_modulo -------------------

# This function used the above inversion of a to find x = (b*a^(-1))mod n
def modular_division2(a, b, n):
"""
>>> modular_division2(4,8,5)
2
>>> modular_division2(3,8,5)
1
>>> modular_division2(4, 11, 5)
4
"""
s = invert_modulo(a, n)
x = (b * s) % n
return x


# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b)

def extended_gcd(a, b):
"""
>>> extended_gcd(10, 6)
(2, -1, 2)
>>> extended_gcd(7, 5)
(1, -2, 3)
** extended_gcd function is used when d = gcd(a,b) is required in output
"""
assert a >= 0 and b >= 0

if b == 0:
d, x, y = a, 1, 0
else:
(d, p, q) = extended_gcd(b, a % b)
x = q
y = p - q * (a // b)

assert a % d == 0 and b % d == 0
assert d == a * x + b * y

return (d, x, y)


# Extended Euclid
def extended_euclid(a, b):
"""
>>> extended_euclid(10, 6)
(-1, 2)
>>> extended_euclid(7, 5)
(-2, 3)
"""
if b == 0:
return (1, 0)
(x, y) = extended_euclid(b, a % b)
k = a // b
return (y, x - k * y)


# Euclid's Lemma : d divides a and b, if and only if d divides a-b and b
# Euclid's Algorithm

def greatest_common_divisor(a, b):
"""
>>> greatest_common_divisor(7,5)
1
Note : In number theory, two integers a and b are said to be relatively prime, mutually prime, or co-prime
if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1.
>>> greatest_common_divisor(121, 11)
11
"""
if a < b:
a, b = b, a

while a % b != 0:
a, b = b, a % b

return b


# Import testmod for testing our function
from doctest import testmod

if __name__ == '__main__':
testmod(name='modular_division', verbose=True)
testmod(name='modular_division2', verbose=True)
testmod(name='invert_modulo', verbose=True)
testmod(name='extended_gcd', verbose=True)
testmod(name='extended_euclid', verbose=True)
testmod(name='greatest_common_divisor', verbose=True)

0 comments on commit 9cc9f67

Please sign in to comment.
You can’t perform that action at this time.