-
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Over the past 5 years, we have seen multiple successes in the development of knowledge graphs for supporting science in domains ranging from drug discovery to social science. However, in order to really improve scientific productivity, we need to expand and deepen our knowledge graphs. To do so, I believe we need to address two critical challenges: 1) dealing with low resource domains; and 2) improving quality. In this talk, I describe these challenges in detail and discuss some efforts to overcome them through the application of techniques such as unsupervised learning; the use of non-experts in expert domains, and the integration of action-oriented knowledge (i.e. experiments) into knowledge graphs.
Be the first to like this
Be the first to comment